Patents by Inventor Daniel C. Upp

Daniel C. Upp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090141719
    Abstract: Methods, systems, and apparatuses related to a communication switch are disclosed herein. In some embodiments, the communication switch may be configured to transmit TDM, ATM and/or packet data from an ingress service processor, through a plurality of switch elements, to an egress service processor. Other embodiments may be described and claimed.
    Type: Application
    Filed: November 17, 2008
    Publication date: June 4, 2009
    Applicant: TR TECHNOLOGIES FOUNDATION LLC
    Inventors: Subhash C. Roy, David K. Toebes, Michael M. Renault, Steven E. Benoit, Igor Zhovnirovsky, Daniel C. Upp, William B. Lipp
  • Patent number: 7409120
    Abstract: Interference caused by the propagation of a transmit signal transmitted from a transmit antenna to a receive antenna is effectively cancelled by an improved signal cancellation system. The system includes an interference cancellation signal generator that generates a time-delayed and amplitude-reduced representation of said transmit signal. A summing stage is operably coupled to the interference cancellation signal generator and the receive antenna. The summing stage subtracts the time-delayed and amplitude-reduced representation of the transmit signal from a receive signal to substantially cancel the interference. The interference cancellation signal generator preferably includes a novel programmable optical delay line that introduces a variable amount of optical delay to an optical signal derived from said transmit signal in addition to a thyristor-based sigma delta modulator that converts samples of the transmit signal to into a digital signal in the optical domain.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: August 5, 2008
    Assignees: The University of Connecticut, Opel, Inc.
    Inventors: Geoff W. Taylor, Jianhong Cai, Daniel C. Upp
  • Patent number: 7349444
    Abstract: Methods for retiming SONET signals include demultiplexing STS-1 signals from an STS-N signal, buffering each of the STS-1 signals in a FIFO, determining the FIFO depth over time, and determining a pointer leak rate based in part on FIFO depth and also based on the rate of received pointer movements. According to the presently preferred embodiment, each FIFO is 29 bytes deep. If FIFO depth is 12-17 bytes, no leaking is performed. If the depth is 8-12 bytes or 17-21 bytes, a slow leak rate is set. If the depth is 4-8 bytes or 21-25 bytes, a fast leak rate is set. If the depth is 0-4 bytes or 25-29 bytes, pointer movements are immediate. The calculated leak rates are based on the net number of pointer movements (magnitude of positive and negative movements summed) received during a sliding window of n×32 seconds (n×256,000 frames).
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: March 25, 2008
    Assignee: Transwitch Corporation
    Inventors: Daniel C. Upp, Suvhasis Mukhopadhyay, Bart Brosens, Kris Van Aken, Chitra Wadhwa, Sachin Mathur, Ramses Valvekens
  • Patent number: 7333733
    Abstract: An optoelectronic pulse generator is provided that includes a thyristor detector/emitter device having an input port and an output port. The thyristor detector/emitter device is adapted to detect an input optical pulse supplied to the input port and to produce an output optical pulse (via laser emission) and an output electrical pulse in response to the detected input optical pulse. The output optical pulse is output via the output port. An optical feedback path is operably coupled between the output port and the input port of the thyristor detector/emitter device. The optical feedback path supplies a portion of the output optical pulse produced by the thyristor detector/emitter device to the input port, thereby causing the thyristor detector/emitter device to produce a sequence of output optical pulses and a corresponding sequence of output electrical pulses.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 19, 2008
    Assignees: The University of Connecticut, Opel, Inc.
    Inventors: Geoff W. Taylor, Rohinton Dehmubed, Daniel C. Upp
  • Patent number: 7064697
    Abstract: Interference caused by the propagation of a transmit signal transmitted from a transmit antenna to a receive antenna is effectively cancelled by an improved signal cancellation system. The system includes an interference cancellation signal generator that generates a time-delayed and amplitude-reduced representation of said transmit signal. A summing stage is operably coupled to the interference cancellation signal generator and the receive antenna. The summing stage subtracts the time-delayed and amplitude-reduced representation of the transmit signal from a receive signal to substantially cancel the interference. The interference cancellation signal generator preferably includes a novel programmable optical delay line that introduces a variable amount of optical delay to an optical signal derived from said transmit signal in addition to a thyristor-based sigma delta modulator that converts samples of the transmit signal to into a digital signal in the optical domain.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: June 20, 2006
    Assignee: The University of Connecticut
    Inventors: Geoff W. Taylor, Jianhong Cai, Daniel C. Upp
  • Patent number: 6954473
    Abstract: An optoelectronic integrated circuit includes a resonant cavity formed on a substrate. A heterojunction thyristor device is formed in the resonant cavity and operates to detect an input optical pulse (or input electrical pulse) and produce an output optical pulse via laser emission in response to the detected input pulse. The heterojunction thyristor device includes a channel region that is coupled to a current source that draws current from the channel region. Time delay between the input pulse and output optical pulse may be varied by configuring the current source to draw constant current from the channel region and modulating the intensity of the input pulse, or by varying the amount of current drawn from the channel region by the current source. The heterojunction thyristor device may be formed from a multilayer structure of group III-V materials, or from a multilayer structure of strained silicon materials.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: October 11, 2005
    Assignees: Opel, Inc., The University of Connecticut
    Inventors: Rohinton Dehmubed, Geoff W. Taylor, Daniel C. Upp, Jianhong Cai
  • Publication number: 20040146237
    Abstract: Interference caused by the propagation of a transmit signal transmitted from a transmit antenna to a receive antenna is effectively cancelled by an improved signal cancellation system. The system includes an interference cancellation signal generator that generates a time-delayed and amplitude-reduced representation of said transmit signal. A summing stage is operably coupled to the interference cancellation signal generator and the receive antenna. The summing stage subtracts the time-delayed and amplitude-reduced representation of the transmit signal from a receive signal to substantially cancel the interference. The interference cancellation signal generator preferably includes a novel programmable optical delay line that introduces a variable amount of optical delay to an optical signal derived from said transmit signal in addition to a thyristor-based sigma delta modulator that converts samples of the transmit signal to into a digital signal in the optical domain.
    Type: Application
    Filed: June 24, 2003
    Publication date: July 29, 2004
    Inventors: Geoff W. Taylor, Jianhong Cai, Daniel C. Upp
  • Publication number: 20040081467
    Abstract: An optoelectronic pulse generator is provided that includes a thyristor detector/emitter device having an input port and an output port. The thyristor detector/emitter device is adapted to detect an input optical pulse supplied to the input port and to produce an output optical pulse (via laser emission) and an output electrical pulse in response to the detected input optical pulse. The output optical pulse is output via the output port. An optical feedback path is operably coupled between the output port and the input port of the thyristor detector/emitter device. The optical feedback path supplies a portion of the output optical pulse produced by the thyristor detector/emitter device to the input port, thereby causing the thyristor detector/emitter device to produce a sequence of output optical pulses and a corresponding sequence of output electrical pulses.
    Type: Application
    Filed: March 7, 2003
    Publication date: April 29, 2004
    Inventors: Geoff W. Taylor, Rohinton Dehmubed, Daniel C. Upp
  • Publication number: 20040081216
    Abstract: An optoelectronic integrated circuit includes a resonant cavity formed on a substrate. A heterojunction thyristor device is formed in the resonant cavity and operates to detect an input optical pulse (or input electrical pulse) and produce an output optical pulse via laser emission in response to the detected input pulse. The heterojunction thyristor device includes a channel region that is coupled to a current source that draws current from the channel region. Time delay between the input pulse and output optical pulse may be varied by configuring the current source to draw constant current from the channel region and modulating the intensity of the input pulse, or by varying the amount of current drawn from the channel region by the current source. The heterojunction thyristor device may be formed from a multilayer structure of group III-V materials, or from a multilayer structure of strained silicon materials.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: Rohinton Dehmubed, Geoff W. Taylor, Daniel C. Upp, Jianhong Cai
  • Patent number: 6646983
    Abstract: A network switch includes at least one port processor and at least one switch element. The port processor has an SONET OC-x interface (for TDM traffic), a UTOPIA interface (for ATM and packet traffic), and an interface to the switch element. In one embodiment, the port processor has a total I/O bandwidth equivalent to an OC-48, and the switch element has 12×12 ports for a total bandwidth of 30 Gbps. A typical switch includes multiple port processors and switch elements. A data frame of 9 rows by 1700 slots is used to transport ATM, TDM, and Packet data from a port processor through one or more switch elements to the same or another port processor. Each frame is transmitted in 125 microseconds; each row in 13.89 microseconds. Each slot includes a 4-bit tag plus a 4-byte payload. The slot bandwidth is 2.592 Mbps which is large enough to carry an E-1 signal with overhead. The 4-bit tag is a cross connect pointer which is setup when a TDM connection is provisioned.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: November 11, 2003
    Assignee: Transwitch Corporation
    Inventors: Subhash C. Roy, Santanu Das, Daniel C. Upp, William B. Lipp, Jitender K. Vij, Michael M. Renault
  • Patent number: 6636511
    Abstract: A network switch includes at least one port processor and at least one switch element. The port processor has an SONET OC-x interface (for TDM traffic), a UTOPIA interface (for ATM and packet traffic), and an interface to the switch element. In one embodiment, the port processor has a total I/O bandwidth equivalent to an OC-48, and the switch element has 12×12 ports for a total bandwidth of 30 Gbps. A typical switch includes multiple port processors and switch elements. A data frame of 9 rows by 1700 slots is used to transport ATM, TDM, and Packet data from a port processor through one or more switch elements to the same or another port processor. Each frame is transmitted in 125 microseconds; each row in 13.89 microseconds. Each slot includes a 4-bit tag plus a 4-byte payload. The slot bandwidth is 2.592 Mbps which is large enough to carry an E-1 signal with overhead. The 4-bit tag is a cross connect pointer which is setup when a TDM connection is provisioned.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: October 21, 2003
    Assignee: Transwitch Corporation
    Inventors: Subhash C. Roy, Michael M. Renault, Frederick R. Carter, David K. Toebes, Rajen S. Ramchandani, Daniel C. Upp
  • Patent number: 6636515
    Abstract: A network switch includes at least one port processor and at least one switch element. The port processor has an SONET OC-x interface (for TDM traffic), a UTOPIA interface (for ATM and packet traffic), and an interface to the switch element. In one embodiment, the port processor has a total I/O bandwidth equivalent to an OC-48, and the switch element has 12×12 ports for a total bandwidth of 30 Gbps. A typical switch includes multiple port processors and switch elements. A data frame of 9 rows by 1700 slots is used to transport ATM, TDM, and Packet data from a port processor through one or more switch elements to the same or another port processor. Each frame is transmitted in 125 microseconds; each row in 13.89 microseconds. Each slot includes a 4-bit tag plus a 4-byte payload. The slot bandwidth is 2.592 Mbps which is large enough to carry an E-1 signal with overhead. The 4-bit tag is a cross connect pointer which is setup when a TDM connection is provisioned.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: October 21, 2003
    Assignee: Transwitch Corporation
    Inventors: Subhash C. Roy, Santanu Das, Daniel C. Upp, William B. Lipp, Jitender K. Vij, Michael M. Renault, Frederick R. Carter, Rajen S. Ramchandani
  • Patent number: 6631130
    Abstract: A network switch includes at least one port processor and at least one switch element. The port processor has an SONET OC-x interface (for TDM traffic), a UTOPIA interface (for ATM and packet traffic), and an interface to the switch element. In one embodiment, the port processor has a total I/O bandwidth equivalent to an OC-48, and the switch element has 12×12 ports for a total bandwidth of 30 Gbps. A typical switch includes multiple port processors and switch elements. A data frame of 9 rows by 1700 slots is used to transport ATM, TDM, and Packet data from a port processor through one or more switch elements to the same or another port processor. Each frame is transmitted in 125 microseconds; each row in 13.89 microseconds. Each slot includes a 4-bit tag plus a 4-byte payload. The slot bandwidth is 2.592 Mbps which is large enough to carry an E-1 signal with overhead. The 4-bit tag is a cross connect pointer which is setup when a TDM connection is provisioned.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: October 7, 2003
    Assignee: Transwitch Corporation
    Inventors: Subhash C. Roy, Daniel C. Upp, William B. Lipp, Steven E. Benoit, Michael M. Renault
  • Patent number: 6577651
    Abstract: Methods for retiming and realigning SONET signals include demultiplexing STS-1 signals from an STS-3 signal, buffering each of the three signals in a FIFO, determining the FIFO depth over time, determining a pointer leak rate based in part on FIFO depth and also based on the rate of received pointer movements. For a 28-byte deep FIFO, if the depth of a FIFO is 12-16 bytes, no pointer leaking is performed. If the depth is 0-4 bytes, an immediate positive leak is performed. If the depth is 24-28, an immediate negative leak is performed. If the depth is 5-11 bytes a calculated positive leak is performed. If the depth is 17-23 bytes, a calculated negative leak is performed. The calculated leak rates are based on the net number of pointer movements (magnitude of positive and negative movements summed) received every 32 seconds (256,000 frames).
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: June 10, 2003
    Assignee: TranSwitch Corp.
    Inventors: Kumar Shakti Singh, Pawan Goyal, Arnab Basak, Vikas Kumar, Daniel C. Upp
  • Publication number: 20020154659
    Abstract: Methods for retiming and realigning SONET signals include demultiplexing STS-1 signals from an STS-3 signal, buffering each of the three signals in a FIFO, determining the FIFO depth over time, determining a pointer leak rate based in part on FIFO depth and also based on the rate of received pointer movements. For a 28-byte deep FIFO, if the depth of a FIFO is 12-16 bytes, no pointer leaking is performed. If the depth is 0-4 bytes, an immediate positive leak is performed. If the depth is 24-28, an immediate negative leak is performed. If the depth is 5-11 bytes a calculated positive leak is performed. If the depth is 17-23 bytes, a calculated negative leak is performed. The calculated leak rates are based on the net number of pointer movements (magnitude of positive and negative movements summed) received every 32 seconds (256,000 frames).
    Type: Application
    Filed: January 24, 2001
    Publication date: October 24, 2002
    Applicant: TranSwitch Corporation
    Inventors: Kumar Shakti Singh, Pawan Goyal, Arnab Basak, Vikas Kumar, Daniel C. Upp
  • Patent number: 6463111
    Abstract: The desynchronizer of the present invention includes two FIFOs. The first FIFO has two address counters (write and read), an intermediate count register, circuitry for calculating the difference between the write and intermediate counts and the intermediate and read counts, a logic block for performing pointer leak and other arithmetic functions, and a digitally controlled oscillator (DCO). The second FIFO has read and write counters, a phase-frequency detector, and an internal VCO controlled by length measurements of the second FIFO. The desynchronizer receives data bits, pointer movement indications, and stuff indications from a DS-3/E3 demapper and, using the first FIFO, the address counters, etc., removes the low frequency components, including SONET/SDH systemic gapping in order to provide the second FIFO with a DS-3/E3 signal having a high frequency phase modulation. The second FIFO removes the remaining high frequency gapping jitter.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: October 8, 2002
    Assignee: Transwitch Corporaton
    Inventor: Daniel C. Upp
  • Patent number: 6243359
    Abstract: The apparatus includes a separate line side inlet queue for each GFR VC, a single network side outlet queue for all GFR VCs, a single network side inlet queue for all GFR VCs, a single line side outlet bulk processing queue with a post queue packet processor followed by separate line side outlet queues for each line, a network side outlet queue monitor, and a line side inlet queue controller. The network side outlet queue monitor is coupled to the line side inlet queue controller so that the network side outlet queue monitor can send messages to the line side inlet queue controller. According to one of the methods of the invention, the network side outlet queue monitor sends messages to the line side inlet queue controller directing the line side inlet queue controller to send data from the line side GFR queues based on the status of the network side outlet GFR queue. According to another method of the invention, the line to side inlet queue controller discards packets for a GFR VC if congestion is indicated.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: June 5, 2001
    Assignee: TranSwitch Corp
    Inventors: Subhash C. Roy, William B. Lipp, Daniel C. Upp, Alberto Bricca
  • Patent number: 6104724
    Abstract: An asynchronous data transfer and source traffic control system includes a bus master and a plurality of bus users coupled to a bidirectional data bus. The bus master provides two clock signals to each bus user, a system clock and a frame clock. The frame clock designates the start of a frame. A frame format preferably includes fifteen or sixteen system clock cycles, the first of which is designated the request field and the last of which includes a grant field. One or more other cycles may be assigned control and/or routing information and the remainder of the cycles comprise a data field of fixed length. During the request field, any number of bus users may request access which is received by the bus master. During the grant field, the bus master grants access to a selected bus user for the entire data portion of the next frame. Which user is granted access to the next frame is determined according to an arbitration algorithm in the bus master which may be unknown to the bus users.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: August 15, 2000
    Assignee: Transwitch Corp.
    Inventor: Daniel C. Upp
  • Patent number: 5901146
    Abstract: An asynchronous data transfer and source traffic control system includes a bus master and a plurality of bus users coupled to a bidirectional data bus. The bus master provides two clock signals to each bus user, a system clock and a frame clock. The frame clock designates the start of a frame. A frame format preferably includes fifteen or sixteen system clock cycles, the first of which is designated the request field and the last of which includes a grant field. One or more other cycles may be assigned control and/or routing information and the remainder of the cycles comprise a data field of fixed length. During the request field, any number of bus users may request access which is received by the bus master. During the grant field, the bus master grants access to a selected bus user for the entire data portion of the next frame. Which user is granted access to the next frame is determined according to an arbitration algorithm in the bus master which may be unknown to the bus users.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: May 4, 1999
    Assignee: TranSwitch Corporation
    Inventor: Daniel C. Upp
  • Patent number: 5608731
    Abstract: An SRTS clock recovery apparatus and method are provided. The apparatus broadly includes a controllable destination node clock generator such as a digitally controllable oscillator, a block for generating a local RTS-related value from the destination node clock and the system reference clock, and a comparator which compares the incoming RTS-related value to the local RTS related value to provide a feedback error or control signal which is used to adjust the controllable clock generator. If desired, a filter which filters the error signal can be provided in the loop. With the feedback loop as provided, when the destination node clock is faster than the source clock, the error signal will cause the destination node clock to slow, and vice versa.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: March 4, 1997
    Assignee: TranSwitch Corporation
    Inventors: Daniel C. Upp, Dan H. Wolaver