Patents by Inventor Daniel D. Sunshine

Daniel D. Sunshine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10785869
    Abstract: Strands of material may be intertwined using weaving techniques, knitting techniques, non-woven or entanglement techniques, or braiding techniques. Fabric that is formed from the strands of material may be used in forming a fabric-based item. The fabric based item may include electrical components. The strands may include conductive strands that form signal paths. The signal paths can carry electrical signals associated with operation of the electrical components. Each strand may have an elongated core and a coating. Strands may also include intermediate layers between the cores and coatings. The cores, intermediate layers, and coatings may be formed from polymer without conductive filler, polymer with conductive filler, and/or metal. A polymer core may be provided with recesses to help retain subsequently deposited layers such as a metal coating layer. The recesses may be grooves that extend along the longitudinal axis of the core.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 22, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Daniel A. Podhajny, Kathryn P. Crews, Kirk M. Mayer, John Arthur Maasberg
  • Publication number: 20200283935
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 10772209
    Abstract: Apparatus, comprising fabric (62) formed from fibers (74); and an electrical component (20) having first and second perpendicular fiber guiding structures, wherein a first of the fibers is soldered in the first fiber guiding structure and a second of the fibers is soldered in the second fiber guiding structure.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: September 8, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Daniel A. Podhajny, Kathryn P. Crews, Yohji Hamada
  • Patent number: 10761605
    Abstract: An item such as a glove may be formed from knitted fabric. The knitted fabric may form fingers for the glove and may form pockets in the fingers. Sensors such as inertial measurement units may be placed in the pockets to measure movements of a user's fingers in the glove. The sensors may be coupled to control circuitry in the glove using conductive yarn in the knitted fabric. The conductive yarn may form courses in the knitted fabric that run along each finger. Haptic components and other electrical components may be coupled to the control circuitry using the conductive yarn. Electrodes may be formed from metal-coated strands of material in the fabric on the sides of each finger. The wireless or wired communications circuitry coupled to the control circuitry may be used to convey information such as user finger movement information to external equipment.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 1, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Andrew L. Rosenberg, Andrew Sterian, Daniel A. Podhajny, Lia M. Uesato, Maurice P. May, Steven J. Keating
  • Publication number: 20200270777
    Abstract: A fabric-based item may include a housing that is covered in fabric. Areas of the fabric may overlap input circuitry such as button switches, touch sensors, force sensors, proximity sensors, and other sensing circuitry and may overlap other components such as light-emitting components and haptic output devices. The fabric-based item may include control circuitry that gathers user input from the input circuitry and wireless communications circuitry that the control circuitry uses to transmit remote control commands and other wireless signals in response information from the input circuitry. The fabric-based item may have a weight that is located in the housing to orient the housing in a desired direction when the housing rests on a surface. A movable weight may tilt the housing in response to proximity sensor signals or other input. Portions of the fabric may overlap light-emitting components and optical fiber configured to emit light.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Daniel A. Podhajny, Daniel D. Sunshine, Kathryn P. Crews
  • Patent number: 10756020
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 25, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Publication number: 20200257375
    Abstract: A dynamic input surface for an electronic device and a method of reconfiguring the same is disclosed. The input surface has a partially-flexible metal contact portion defining an input area, and a group of indicators. The indicators may be group of holes extending through the contact portion. The group of holes may be selectively illuminated based on a gesture performed on the contact portion. A size of the input area may be dynamically varied based on the gesture. Additionally, the group of indicators indicates a boundary of the input area.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Brett W. Degner, Daniel D. Sunshine, Ron A. Hopkinson, Christiaan A. Ligtenberg, William F. Leggett, Patrick Kessler
  • Patent number: 10739924
    Abstract: A touch-sensitive textile device that is configured to detect the occurrence of a touch, the location of a touch, and/or the force of a touch on the touch-sensitive textile device. In some embodiments, the touch-sensitive textile device includes a first set of conductive threads oriented along a first direction, and a second set of conductive threads interwoven with the first set of conductive threads and oriented along a second direction. The device may also include a sensing circuit that is operatively coupled to the first and second set of conductive threads. The sensing circuit may be configured to apply a drive signal to the first and second set of conductive threads. The sensing circuit may also be configured to detect a touch or near touch based on a variation in an electrical measurement using the first or second set of conductive threads.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventors: Daniel A. Podhajny, Kathryn P. Crews, Daniel D. Sunshine
  • Patent number: 10732728
    Abstract: A keyboard may be provided that has keys overlapped by a touch sensor. The keyboard may have key sensor circuitry for monitoring switching in the keys for key press input. The keyboard may also have touch sensor circuitry such as capacitive touch sensor circuitry that monitors capacitive electrodes in the touch sensor for touch sensor input such as multitouch gesture input. The touch sensor may be formed from a layer of fabric. The fabric may be woven fabric or other fabric in which conductive strands of material serve as the electrodes for the touch sensor.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 4, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Daniel A. Podhajny, David M. Kindlon
  • Patent number: 10724158
    Abstract: Weaving equipment may include warp strand positioning equipment that positions warp strands and weft strand positioning equipment that inserts weft strands among the warp strands to form fabric. The fabric may include insulating strands and conductive strands. Conductive strands may run orthogonal to each other and may cross at open circuit and short circuit intersections. The fabric may be formed using pairs of interwoven warp and weft strands. Conductive warp and weft strands may be interposed within the pairs of strands. The fabric may be a single layer fabric or may contain two or more layers. Stacked warp strands may be formed between pairs of adjacent insulating warp strands. The stacked warp strands may include insulating and conductive strands. Touch sensors and other components may include conductive structures that are formed from the conductive strands in the fabric.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Daniel A. Podhajny, Daniel D. Sunshine, Kathryn P. Crews
  • Patent number: 10701802
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10689783
    Abstract: A fabric-based item may include a housing that is covered in fabric. Areas of the fabric may overlap input circuitry such as button switches, touch sensors, force sensors, proximity sensors, and other sensing circuitry and may overlap other components such as light-emitting components and haptic output devices. The fabric-based item may include control circuitry that gathers user input from the input circuitry and wireless communications circuitry that the control circuitry uses to transmit remote control commands and other wireless signals in response information from the input circuitry. The fabric-based item may have a weight that is located in the housing to orient the housing in a desired direction when the housing rests on a surface. A movable weight may tilt the housing in response to proximity sensor signals or other input. Portions of the fabric may overlap light-emitting components and optical fiber configured to emit light.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 23, 2020
    Assignee: Apple Inc.
    Inventors: Daniel A. Podhajny, Daniel D. Sunshine, Kathryn P. Crews
  • Patent number: 10683591
    Abstract: An item such as a removable device cover or a portable electronic device may have a fabric hinge. The item may have first and second structures that are configured to rotate relative to each other. The fabric hinge may have first and second fabric layers that are coupled to the first structure and third and fourth fabric layers that are coupled to the second structure. A center portion of the fabric hinge may have one side that is coupled to the first and second fabric layers and an opposing second side that is coupled to the third and fourth fabric layers. In the center portion, first strands of material may extend outwardly into the first and fourth fabric layers and second parallel strands that are interspersed with the first strands may extend outwardly into the second and third fabric layers.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 16, 2020
    Assignee: Apple Inc.
    Inventors: Daniel A. Podhajny, Daniel D. Sunshine, Didio V. Gomes, Kevin M. Robinson, Mariel L. Lanas, Ari P. Miller, Houtan Farahani
  • Publication number: 20200157714
    Abstract: Conductive yarns in a knitted fabric may include insulating cores covered with metal layers that form signal paths. Open circuits may be formed in the yarns by removing metal from the insulating cores at selected locations within the yarns. The fabric may be formed from rows of interlocked loops of the yarn. The open circuits may be located on the loops so that each loop with an open circuit has a first segment of the metal layer that is separated from a second segment of the layer by a portion of the loop from which the metal layer has been removed. Each electrical component may have terminals that span a respective one of the open circuits and that are shorted respectively to the metal of the first and second segments.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Daniel A. Podhajny, Daniel D. Sunshine, Yohji Hamada
  • Patent number: 10656719
    Abstract: A dynamic input surface for an electronic device and a method of reconfiguring the same is disclosed. The input surface has a partially-flexible metal contact portion defining an input area, and a group of indicators. The indicators may be group of holes extending through the contact portion. The group of holes may be selectively illuminated based on a gesture performed on the contact portion. A size of the input area may be dynamically varied based on the gesture. Additionally, the group of indicators indicates a boundary of the input area.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: May 19, 2020
    Assignee: Apple Inc.
    Inventors: Brett W. Degner, Daniel D. Sunshine, Ron A. Hopkinson, Christiaan A. Ligtenberg, William F. Leggett, Patrick Kessler
  • Patent number: 10649528
    Abstract: A fabric-based item such as a fabric glove may include force sensing circuitry. The force sensing circuitry may include force sensor elements formed from electrodes on a compressible substrate such as an elastomeric polymer substrate. The fabric may include intertwined strands of material including conductive strands. Signals from the force sensing circuitry may be conveyed to control circuitry in the item using the conductive strands. Wireless circuitry in the fabric-based item may be used to convey force sensor information to external equipment. The compressible substrate may have opposing upper and lower surfaces. Electrodes for the force sensor elements may be formed on the upper and lower surfaces. Stiffeners may overlap the electrodes to help decouple adjacent force sensor elements from each other. Integrated circuits can be attached to respective force sensing elements using adhesive.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 12, 2020
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, Maurice P. May
  • Publication number: 20200142501
    Abstract: A keyboard may be provided that has keys overlapped by a touch sensor. The keyboard may have key sensor circuitry for monitoring switching in the keys for key press input. The keyboard may also have touch sensor circuitry such as capacitive touch sensor circuitry that monitors capacitive electrodes in the touch sensor for touch sensor input such as multitouch gesture input. The keyboard may include an outer layer of fabric that overlaps the keys. The fabric may have openings that are arranged to form alphanumeric characters. Light sources may emit light that passes through the openings and illuminates the alphanumeric characters. The touch sensor may have signal lines that are not visible through the openings. The signal lines may be transparent, may be covered by a diffuser, or may circumvent the openings so that they do not overlap.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Paul X. Wang, Chia Chi Wu, Qiliang Xu, Zheng Gao, Daniel D. Sunshine, Aidan N. Zimmerman
  • Publication number: 20200123683
    Abstract: Weaving equipment may include strand positioning equipment that positions warp strands and that inserts weft strands among the warp strands to form fabric. The weaving equipment may include one or more guide arms that pushes warp strands in the weft direction during weaving. Fabrics having warp strands that extend in both the warp direction and the weft direction may be used in forming circuitry in fabrics such as touch sensor circuitry. For example, a touch sensor in a fabric may be formed using first conductive warp strands that form first touch sensor electrodes and second conductive warp strands that form second touch sensor electrodes that overlap with the first touch sensor electrodes. The second conductive warp strands may each have a first portion that extends in the warp direction and a second portion that extends in the weft direction across the first touch sensor electrodes.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Daniel A. Podhajny, Yohji Hamada, Kathryn P. Crews, Joseph B. Walker, Daniel D. Sunshine
  • Patent number: 10600928
    Abstract: An item may include circuitry, a battery that powers the circuitry, and one or more photovoltaic cells that are used to recharge the battery. The photovoltaic cell may be a thin-film photovoltaic cell with a flexible substrate. The flexible substrate may be formed from fabric, leather, polymer, or other soft materials. In arrangements where the substrate is formed from fabric with conductive strands, the photovoltaic cell may include a first electrical terminal coupled to a first conductive strand and a second electrical terminal coupled to a second conductive strand. The first and second conductive strands may be coupled to control circuitry. The control circuitry may route the electricity from the photovoltaic cell to a battery or other circuitry. Items such as cases, covers, bands, headphones, interiors, and other items may have flexible or soft surfaces that can form substrates for photovoltaic films.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: March 24, 2020
    Assignee: Apple Inc.
    Inventors: Joseph B. Walker, Kathleen A. Bergeron, Daniel D. Sunshine
  • Publication number: 20200087823
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The fabric may include first and second fabric layers that at least partially surround a pocket. Initially, the pocket may be completely enclosed by the first and second layers of fabric. A shim may be placed in the pocket before the pocket is closed. An opening may be formed in the first layer of fabric to expose a conductive strand in the pocket. The shim may prevent the cutting tool from cutting all the way through to the second layer of fabric. After cutting the hole in the first layer of fabric, the shim may be removed and an electrical component may be soldered to the conductive strand in the pocket. A polymer material may be injected into the pocket to encapsulate the electrical component. The polymer material may interlock with the surrounding pocket walls.
    Type: Application
    Filed: May 17, 2019
    Publication date: March 19, 2020
    Inventors: Peter F. Coxeter, Didio V. Gomes, Benjamin J. Grena, Steven J. Keating, David M. Kindlon, Maurice P. May, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine