Patents by Inventor Daniel Gealy

Daniel Gealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150028284
    Abstract: Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Andrea Gotti, F. Daniel Gealy, Davide Columbo
  • Publication number: 20140361238
    Abstract: Resistance variable memory cell structures and methods are described herein. A number of embodiments include a first resistance variable memory cell comprising a number of resistance variable materials in a super-lattice structure and a second resistance variable memory cell comprising the number of resistance variable materials in a homogeneous structure.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Sachin V. Joshi, F. Daniel Gealy
  • Publication number: 20140183443
    Abstract: Engineered substrates having epitaxial formation structures with enhanced shear strength and associated systems and methods are disclosed herein. In several embodiments, for example, an engineered substrate can be manufactured by forming a shear strength enhancement material at a front surface of a donor substrate and implanting ions a depth into the donor substrate through the shear strength enhancement material. The ion implantation can form a doped portion in the donor substrate that defines an epitaxial formation structure. The method can further include transferring the epitaxial formation structure from the donor substrate to a front surface of a handle substrate. The shear strength enhancement material can be positioned between the epitaxial formation structure and the front surface of the handle substrate and bridge defects in the front surface of the handle substrate.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Belford T. Coursey, F. Daniel Gealy, George E. Beck
  • Patent number: 8722480
    Abstract: Transistors are provided including first and second source/drain regions, a channel region and a gate stack having a first gate dielectric over a substrate, the first gate dielectric having a dielectric constant higher than a dielectric constant of silicon dioxide, and a metal material in contact with the first gate dielectric, the metal material being doped with an inert element. Integrated circuits including the transistors and methods of forming the transistors are also provided.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: May 13, 2014
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Suraj J. Mathew, Cancheepuram V. Srividya
  • Patent number: 8691656
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 8673706
    Abstract: The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: March 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu, Chris M. Carlson, F. Daniel Gealy
  • Publication number: 20130258550
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventors: Rishikesh Krishnan, F. Daniel Gealy, Vidya Srividya, Noel Rocklein
  • Patent number: 8497566
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 30, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Patent number: 8481122
    Abstract: ALD-type methods which include providing two or more different precursors within a chamber at different and substantially non-overlapping times relative to one another to form a material, and thereafter exposing the material to one or more reactants to change a composition of the material. In particular aspects, the precursors utilized to form the material are metal-containing precursors, and the reactant utilized to change the composition of the material comprises oxygen, silicon, and/or nitrogen.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Chris M. Carlson, Vishwanath Bhat, F. Daniel Gealy
  • Patent number: 8450173
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Daniel Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20130011990
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Daniel Gealy
  • Patent number: 8299462
    Abstract: The invention includes a dielectric mode from ALD-type methods in which two or more different precursors are utilized with one or more reactants to form the dielectric material. In particular aspects, the precursors are aluminum and hafnium and/or zirconium for materials made from a hafnium precursor, the hafnium oxide is predominantly in a tetragonal crystalline phase.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 30, 2012
    Assignee: Round Rock Research, LLC
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Publication number: 20120098093
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 26, 2012
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Publication number: 20120037902
    Abstract: The invention includes a dielectric mode from ALD-type methods in which two or more different precursors are utilized with one or more reactants to form the dielectric material. In particular aspects, the precursors are aluminum and hafnium and/or zirconium for materials made from a hafnium precursor, the hafnium oxide is predominantly in a tetragonal crystalline phase.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: Round Rock Research, LLC
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Patent number: 8105896
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 31, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Publication number: 20110318921
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Application
    Filed: September 7, 2011
    Publication date: December 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Publication number: 20110300721
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Daniel Gealy
  • Patent number: 8049304
    Abstract: The invention includes ALD-type methods in which two or more different precursors are utilized with one or more reactants to form a material. In particular aspects, the precursors are hafnium and aluminum, the only reactant is ozone, and the material is hafnium oxide predominantly in a tetragonal crystalline phase.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: November 1, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Patent number: 8030168
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Publication number: 20110067629
    Abstract: Methods and devices for controlling a growth rate of films in semiconductor structures are shown. Chemical vapor deposition methods and devices include the use of a reaction inhibitor that selectively varies a deposition rate along a surface. One specific method includes atomic layer deposition. One method shown provides high step coverage over features such as trenches in trench plate capacitors. Also shown are methods and devices to provide uniform batch reactor layer thicknesses. Also shown are methods for forming alloy layers with high control over composition. Also shown are methods to selectively control growth rate to provide growth only on selected surfaces.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventors: M. Noel Rocklein, F. Daniel Gealy