Patents by Inventor Daryoosh Vakhshoori

Daryoosh Vakhshoori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240159588
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 16, 2024
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Patent number: 11885681
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 30, 2024
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20230358709
    Abstract: In quartz-enhanced photoacoustic spectroscopy (QEPAS), an analyte (typically in gas phase) generates a pressure wave in response to incident laser light. A quartz tuning fork (QTF) resonant at the frequency of the pressure wave transduces the pressure wave into an electrical signal. Pulsing the laser briefly reduces the amount of thermal chirp and increases the fraction of time that the laser emits at the wavelength(s) of interest. This increases the measurement efficiency. Pulsing the incident laser light with bursts of short pulses at the QTF resonant frequency increases signal strength. Exciting the sample with a two pulses at different laser wavelengths, separated by a half QTF period yields signal and background acoustic waves that partially cancel when integrated by the QTF, producing a differential measurement. Pulsing the incident laser light at a frequency faster than the gas response cut off frequency can improve the noise performance of a QEPAS measurement.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Applicant: Pendar Technologies, LLC
    Inventors: Romain BLANCHARD, Daryoosh VAKHSHOORI
  • Patent number: 11717167
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: August 8, 2023
    Assignees: Pendar Technologies, LLC, Children's Medical Center Corporation
    Inventors: John P. Romfh, Daryoosh Vakhshoori, John N. Kheir, Peili Chen, Brian Polizzotti, Joshua Salvin, Alison Perry
  • Publication number: 20230109459
    Abstract: The present technology includes a system and method for monitoring a donor organ tissue using Raman spectroscopy. The technology enables real-time quantification of the mitochondrial redox state in the tissue sample taken from an organ intended for transplant using a compact device. The system is based on resonance Raman spectroscopy which can quantify a mitochondrial redox state in tissues using a Resonance Raman Reduced Mitochondrial Ratio. The mitochondrial redox state of the tissue sample acts as a marker of tissue function and may distinguish healthy versus damaged tissue. Moreover, these measures may correlate with transplantation outcomes.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Applicants: Pendar Technologies, LLC, The General Hospital Corporation
    Inventors: John P. ROMFH, Daryoosh VAKHSHOORI, Peili CHEN, Shannon Tessier, Reinier De Vries, Stephanie Cronin
  • Publication number: 20220373466
    Abstract: Apparatuses and methods for using Raman Resonance Spectroscopy to evaluate metabolic and oxygenation status of the eye are disclosed herein. In some embodiments, metabolic mapping of the eye may be performed by aligning a Raman spectrum and a recorded spatial image of the eye.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Applicants: Children's Medical Center Corporation, Pendar Technologies, LLC
    Inventors: Lois Smith, Bertan D. Cakir, John Padraic Romfh, Pelli Chen, Daryoosh Vakhshoori
  • Publication number: 20220333985
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 20, 2022
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Patent number: 11300448
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 12, 2022
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20210223100
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 22, 2021
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Publication number: 20210208108
    Abstract: In quartz-enhanced photoacoustic spectroscopy (QEPAS), an analyte (typically in gas phase) generates a pressure wave in response to incident laser light. A quartz tuning fork (QTF) resonant at the frequency of the pressure wave transduces the pressure wave into an electrical signal. Pulsing the laser briefly reduces the amount of thermal chirp and increases the fraction of time that the laser emits at the wavelength(s) of interest. This increases the measurement efficiency. Pulsing the incident laser light with bursts of short pulses at the QTF resonant frequency increases signal strength. Exciting the sample with a two pulses at different laser wavelengths, separated by a half QTF period yields signal and background acoustic waves that partially cancel when integrated by the QTF, producing a differential measurement. Pulsing the incident laser light at a frequency faster than the gas response cut off frequency can improve the noise performance of a QEPAS measurement.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 8, 2021
    Inventors: Romain BLANCHARD, Daryoosh VAKHSHOORI
  • Patent number: 10921187
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 16, 2021
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 10908129
    Abstract: In quartz-enhanced photoacoustic spectroscopy (QEPAS), an analyte (typically in gas phase) generates a pressure wave in response to incident laser light. A quartz tuning fork (QTF) resonant at the frequency of the pressure wave transduces the pressure wave into an electrical signal. Pulsing the laser briefly reduces the amount of thermal chirp and increases the fraction of time that the laser emits at the wavelength(s) of interest. This increases the measurement efficiency. Pulsing the incident laser light with bursts of short pulses at the QTF resonant frequency increases signal strength. Exciting the sample with a two pulses at different laser wavelengths, separated by a half QTF period yields signal and background acoustic waves that partially cancel when integrated by the QTF, producing a differential measurement. Pulsing the incident laser light at a frequency faster than the gas response cut off frequency can improve the noise performance of a QEPAS measurement.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: February 2, 2021
    Assignee: Pendar Technologies, LLC
    Inventors: Romain Blanchard, Daryoosh Vakhshoori
  • Publication number: 20200281474
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 10, 2020
    Inventors: John P. ROMFH, Daryoosh VAKHSHOORI, John N. KHEIR, Peili CHEN, Brian POLIZZOTTI, Joshua SALVIN, Alison PERRY
  • Patent number: 10527495
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: January 7, 2020
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20190368938
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Publication number: 20190368927
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Publication number: 20190368939
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20190368937
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 10488260
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 26, 2019
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 10488252
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 26, 2019
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes