Patents by Inventor David E. Lazovsky

David E. Lazovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8163631
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 24, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20120074096
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20120048829
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: November 3, 2011
    Publication date: March 1, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20120043298
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20120021553
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 26, 2012
    Applicant: INTERMOLECULAR, INC.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 8084400
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 27, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 8067340
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: November 29, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20110281402
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: INTERMOLECULAR, INC.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 8058154
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 15, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 8039383
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: October 18, 2011
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 8030772
    Abstract: Devices are presented including: a substrate including a dielectric region and a conductive region; a molecular self-assembled layer selectively formed on the dielectric region; and a capping layer formed on the conductive region, where the capping layer is an electrically conductive material such as: an alloy of cobalt and boron material, an alloy of cobalt, tungsten, and phosphorous material, an alloy of nickel, molybdenum, and phosphorous. In some embodiments, devices are presented where the molecular self-assembled layer includes one or more of a polyelectrolyte, a dendrimer, a hyper-branched polymer, a polymer brush, a block co-polymer, and a silane-based material where the silane-based material includes one or more hydrolysable substituents of a general formula RnSiX4-n, where R is: an alkyl, a substituted alkyl, a fluoroalkyl, an aryl, a substituted aryl, and a fluoroaryl, and where X is: a halo, an alkoxy, an aryloxy, an amino, an octadecyltrichlorosilane, and an aminopropyltrimethoxysilane.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: October 4, 2011
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Publication number: 20110175228
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, flouroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Applicant: INTERMOLECULAR, INC.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Publication number: 20110177236
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, flouroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Applicant: INTERMOLECULAR, INC.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Publication number: 20110163424
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroaryl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 7, 2011
    Applicant: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Patent number: 7972972
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 5, 2011
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Publication number: 20110101536
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 5, 2011
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 7902063
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 8, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20110021015
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Application
    Filed: June 14, 2010
    Publication date: January 27, 2011
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 7871928
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: January 18, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 7749881
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: July 6, 2010
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie