Patents by Inventor David E. Lazovsky

David E. Lazovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090227049
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: May 4, 2009
    Publication date: September 10, 2009
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 7544574
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: June 9, 2009
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20080246150
    Abstract: Devices are presented including: a substrate including a dielectric region and a conductive region; a molecular self-assembled layer selectively formed on the dielectric region; and a capping layer formed on the conductive region, where the capping layer is an electrically conductive material such as: an alloy of cobalt and boron material, an alloy of cobalt, tungsten, and phosphorous material, an alloy of nickel, molybdenum, and phosphorous. In some embodiments, devices are presented where the molecular self-assembled layer includes one or more of a polyelectrolyte, a dendrimer, a hyper-branched polymer, a polymer brush, a block co-polymer, and a silane-based material where the silane-based material includes one or more hydrolysable substituents of a general formula RnSiX4-n, where R is: an alkyl, a substituted alkyl, a fluoroalkyl, an aryl, a substituted aryl, and a fluoroaryl, and where X is: a halo, an alkoxy, an aryloxy, an amino, an octadecyltrichlorosilane, and an aminopropyltrimethoxysilane.
    Type: Application
    Filed: May 20, 2008
    Publication date: October 9, 2008
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 7390739
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: June 24, 2008
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Publication number: 20080133161
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: February 11, 2008
    Publication date: June 5, 2008
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20080128696
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: February 12, 2008
    Publication date: June 5, 2008
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20080132089
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: February 8, 2008
    Publication date: June 5, 2008
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20080113178
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Patent number: 7309658
    Abstract: Systems and methods for molecular self-assembly are provided. The molecular self-assembly receives a substrate that includes one or more regions of dielectric material. A molecularly self-assembled layer is formed on an exposed surface of the dielectric material. The molecularly self-assembled layer includes material(s) having a molecular characteristic and/or a molecular type that includes one or more of a molecular characteristic and/or a molecular type of a head group of molecules of the material, a molecular characteristic and/or a molecular type of a terminal group of molecules of the material, and a molecular characteristic and/or a molecular type of a linking group of molecules of the material. The molecular characteristic(s) and molecular type(s) are selected according to at least one pre-specified property of the molecularly self-assembled layer.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz