Patents by Inventor David H. Gracias

David H. Gracias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7005390
    Abstract: Processing problems associated with porous low-k dielectric materials are often severe. Exposure of low-k materials to plasma during feature etching, ashing, and priming steps has deleterious consequences. For porous, silicon-based low-k dielectric materials, the plasma depletes a surface organic group, raising the dielectric constant of the material. In the worst case, the damaged dielectric is destroyed during the wet etch removal of the antireflective coating in the via-first copper dual-damascene integration scheme. This issue is addressed by exposing the dielectric to silane coupling agents at various stages of etching and cleaning. Chemical reactions with the silane coupling agent both replenish the dielectric surface organic group and passivate the dielectric surface relative to the surface of the antireflective coating.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: February 28, 2006
    Assignee: Intel Corporation
    Inventors: Vijayakumar S. RamachandraRao, David H. Gracias
  • Patent number: 6974762
    Abstract: A method of silanizing the surface of a low-k interlayer dielectric oxides (carbon doped oxides or organo-silicate glasses) to improve surface adhesion to adjacent thin film layers in damascene integration of microelectronic devices. A low-k interlayer dielectric oxide may be exposed to the vapor of a silane-coupling agent in order to modify its surface energy to improve adhesion with adjacent thin film layers. A low-k interlayer dielectric oxide can also be silanized by dipping the low-k interlayer dielectric oxide in a solution of silane-coupling agent. The silane-coupling agent will cause covalent bonds between the low-k interlayer dielectric oxide and the adjacent thin film thereby improving adhesion.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: December 13, 2005
    Assignee: Intel Corporation
    Inventors: David H. Gracias, Vijayakumar S. Ramachandrarao
  • Patent number: 6943121
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 13, 2005
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 6905958
    Abstract: A structure and method for protecting exposed copper lines with chemisorbed, sacrificial, organic monolayers from further processing steps are herein described.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: June 14, 2005
    Assignee: Intel Corporation
    Inventors: David H. Gracias, Grant Kloster
  • Patent number: 6858527
    Abstract: Methods and solutions for forming self assembled organic monolayers that are covalently bound to metal interfaces are presented along with a device containing a self assembled organic monolayer. Embodiments of the present invention utilize self assembled thiolate monolayers to prevent the electromigration and surface diffusion of copper atoms while minimizing the resistance of the interconnect lines. Self assembled thiolate monolayers are used to cap the copper interconnect lines and chemically hold the copper atoms at the top of the lines in place, thus preventing surface diffusion. The use of self assembled thiolate monolayers minimizes the resistance of copper interconnect lines because only a single monolayer of approximately 10 ? and 20 ? in thickness is used.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: February 22, 2005
    Assignee: Intel Corporation
    Inventor: David H. Gracias
  • Publication number: 20040229462
    Abstract: Embodiments of the present invention provide methods to reduce the copper line roughness for increased electrical conductivity in narrow interconnects having a width of less than 100 nm. These methods reduce the copper line roughness by first smoothing the surface on which the copper lines are formed by performing a short electrochemical etch of the surface. The electrical conductivity of the interconnects is increased by reducing the copper line roughness that in turn reduces the resistivity of the copper lines.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Inventors: David H. Gracias, Chih-I Wu
  • Publication number: 20040214427
    Abstract: A thin hard mask is formed over a semiconductor substrate. The thin hard mask allows diffusion of a sacrificial material or pore-forming agent therethrough to form an underlying air gap or porous dielectric region. The thin hard mask may be a polymer or an initially porous material that may be later densified. The thin hard mask may be used to prevent etch steps used in forming an unlanded via from reaching layers below the hard mask.
    Type: Application
    Filed: April 24, 2003
    Publication date: October 28, 2004
    Inventors: Grant M. Kloster, Kevin P. O'Brien, David H. Gracias, Hyun-Mog Park, Vijayakumar S. Ramachandrarao
  • Publication number: 20040203192
    Abstract: Methods and solutions for forming self assembled organic monolayers that are covalently bound to metal interfaces are presented along with a device containing a self assembled organic monolayer. Embodiments of the present invention utilize self assembled thiolate monolayers to prevent the electromigration and surface diffusion of copper atoms while minimizing the resistance of the interconnect lines. Self assembled thiolate monolayers are used to cap the copper interconnect lines and chemically hold the copper atoms at the top of the lines in place, thus preventing surface diffusion. The use of self assembled thiolate monolayers minimizes the resistance of copper interconnect lines because only a single monolayer of approximately 10 Å and 20 Å in thickness is used.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 14, 2004
    Inventor: David H. Gracias
  • Publication number: 20040102032
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Application
    Filed: November 3, 2003
    Publication date: May 27, 2004
    Inventors: Grant M. Kloster, Kevin P. O'brien, Michael D. Goodner, Jihperng Leu, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Publication number: 20040072436
    Abstract: Processing problems associated with porous low-k dielectric materials are often severe. Exposure of low-k materials to plasma during feature etching, ashing, and priming steps has deleterious consequences. For porous, silicon-based low-k dielectric materials, the plasma depletes a surface organic group, raising the dielectric constant of the material. In the worst case, the damaged dielectric is destroyed during the wet etch removal of the antireflective coating in the via-first copper dual-damascene integration scheme. This issue is addressed by exposing the dielectric to silane coupling agents at various stages of etching and cleaning. Chemical reactions with the silane coupling agent both replenish the dielectric surface organic group and passivate the dielectric surface relative to the surface of the antireflective coating.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 15, 2004
    Inventors: Vijayakumar S. RamachandraRao, David H. Gracias
  • Publication number: 20040023515
    Abstract: A method of silanizing the surface of a low-k interlayer dielectric oxides (carbon doped oxides or organo-silicate glasses) to improve surface adhesion to adjacent thin film layers in damascene integration of microelectronic devices. A low-k interlayer dielectric oxide may be exposed to the vapor of a silane-coupling agent in order to modify its surface energy to improve adhesion with adjacent thin film layers. A low-k interlayer dielectric oxide can also be silanized by dipping the low-k interlayer dielectric oxide in a solution of silane-coupling agent. The silane-coupling agent will cause covalent bonds between the low-k interlayer dielectric oxide and the adjacent thin film thereby improving adhesion.
    Type: Application
    Filed: August 1, 2002
    Publication date: February 5, 2004
    Inventors: David H. Gracias, Vijayakumar S. Ramachandrarao
  • Patent number: 6620741
    Abstract: A method for controlling etch bias of carbon doped oxide films comprising performing the etch in a cyclic two step process i.e., a carbon doped oxide (CDO) removal process, said CDO removal process comprises a first gas to etch a trench in the CDO layer. The CDO removal process is followed by a polymer deposition process. The polymer deposition process comprises introducing a second gas in the reactor to deposit a polymer in the trench of the CDO layer. The first gas comprises a first molecule having a first ratio of carbon atoms to fluorine atoms, and the second gas comprises a second molecule having a second ratio of carbon atoms to fluorine atoms, such that the second ratio of carbon atoms to fluorine atoms is greater than the first ratio of carbon atoms to fluorine atoms. The above process may be repeated to etch the final structure.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: September 16, 2003
    Assignee: Intel Corporation
    Inventors: David H. Gracias, Hyun-Mog Park, Vijayakumar S. Ramachandrarao
  • Publication number: 20020064909
    Abstract: Techniques for self assembly of macro-scale objects, optionally defining electrical circuitry, are described, as well as articles formed by self assembly. Components can be joined, during self-assembly by minimization of free energy, capillary attraction, or a combination.
    Type: Application
    Filed: July 19, 2001
    Publication date: May 30, 2002
    Inventors: David H. Gracias, Joe Tien, George M. Whitesides