Patents by Inventor David J. Monk

David J. Monk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7437951
    Abstract: A flowmeter is provided that comprises a leadframe assembly (140) and a body (144) disposed at least partially around the leadframe assembly (140). The body (144) has a flow passage therethrough that comprises a first channel (178) having a first port (166), a second channel (180) having a second port (168), and a flow altering element (182) disposed within the second channel (180). First and second pressure sensors (174 and 176) are disposed within the body (144) and coupled to the leadframe assembly (140) for measuring a first pressure within the first channel (178) and a second pressure within the second channel (180), respectively. An integrated circuit (155), which is coupled to the leadframe assembly (140), to the first pressure sensor (174), and to the second pressure sensor (176), is configured to determine the rate of flow through the flow passage from the first pressure and the second pressure.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: October 21, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, David J. Monk
  • Publication number: 20080196499
    Abstract: A transducer package 20 includes a substrate 32 having a first axis of symmetry 36 and a second axis of symmetry 38 arranged orthogonal to the first axis of symmetry 36. At least a first sensor 50 and a second sensor 52 each of which are symmetrically arranged on the substrate 32 relative to one of the first and second axes of symmetry 36 and 38. The first and second sensors 50 and 52 are adapted to detect movement parallel to the other of the first and second axes of symmetry 36 and 38. The first sensor 50 is adapted to detect movement over a first sensing range and the second sensor 52 is adapted to detect movement over a second sensing range, the second sensing range differing from the first sensing range.
    Type: Application
    Filed: February 21, 2007
    Publication date: August 21, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Gary G. Li, Todd F. Miller, David J. Monk
  • Patent number: 7261003
    Abstract: A flowmeter is provided that comprises a leadframe assembly (140) and a body (144) disposed at least partially around the leadframe assembly (140). The body (144) has a flow passage therethrough that comprises a first channel (178) having a first port (166), a second channel (180) having a second port (168), and a flow altering element (182) disposed within the second channel (180). First and second pressure sensors (174 and 176) are disposed within the body (144) and coupled to the leadframe assembly (140) for measuring a first pressure within the first channel (178) and a second pressure within the second channel (180), respectively. An integrated circuit (155), which is coupled to the leadframe assembly (140), to the first pressure sensor (174), and to the second pressure sensor (176), is configured to determine the rate of flow through the flow passage from the first pressure and the second pressure.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: August 28, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, David J. Monk
  • Patent number: 7052939
    Abstract: A structure that reduces signal cross-talk through the semiconductor substrate for System-On-Chip (SOC) (2) applications, thereby facilitating the integration of digital circuit blocks (6) and analog circuit blocks (8) onto a single IC. Cross-circuit interaction through a substrate (4) is reduced by strategically positioning the various digital circuit blocks (6) and analog circuit blocks (8) in an isolated wells (10), (12), (16) and (20) over a resistive substrate (4). These well structures (10), (12), (16), and (20) are then surrounded with a patterned low resistivity layer (22) and optional trench region (24). The patterned low resistivity region (22) is formed below wells (10) and (12) and functions as a low resistance AC ground plane. This low resistivity region (22) collects noise signals that propagate between digital circuit blocks (6) and analog circuit blocks (8).
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 30, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wen Ling M. Huang, Sushil Bharatan, Carl Kyono, David J. Monk, Kun-Hin To, Pamela J. Welch
  • Patent number: 6913941
    Abstract: A method for creating a MEMS structure is provided. In accordance with the method, a substrate (53) is provided having a sacrificial layer (55) disposed thereon and having a layer of silicon (57) disposed over the sacrificial layer. A first trench (59) is created which extends through the silica layer and the sacrificial layer and which separates the sacrificial layer into a first region (61) enclosed by the first trench and a second region (63) exterior to the first trench. A first material (65) is deposited into the first trench such that the first material fills the first trench to a depth at least equal to the thickness of the sacrificial layer. A second trench (71) is created exterior to the first trench which extends through at least the silicon layer and exposes at least a portion of the second region of the sacrificial layer.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: July 5, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gary J. O'Brien, David J. Monk
  • Patent number: 6769319
    Abstract: A component includes a housing (110, 1110) at least partially defining a cavity (125, 1125), a sensor element (105) located in the cavity, and a support member (340, 1140) located over the cavity, located over at least a portion of the housing, and having a hole (341, 1141) over the cavity. The component also includes a filter (345, 700, 800, 1045) located over the support member and located over the hole in the support member.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: August 3, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, David J. Monk, James E. Hannibal, Jr., Slobodan Petrovic
  • Publication number: 20040099878
    Abstract: A structure that reduces signal cross-talk through the semiconductor substrate for System-On-Chip (SOC) (2) applications, thereby facilitating the integration of digital circuit blocks (6) and analog circuit blocks (8) onto a single IC. Cross-circuit interaction through a substrate (4) is reduced by strategically positioning the various digital circuit blocks (6) and analog circuit blocks (8) in an isolated wells (10), (12), (16) and (20) over a resistive substrate (4). These well structures (10), (12), (16), and (20) are then surrounded with a patterned low resistivity layer (22) and optional trench region (24). The patterned low resistivity region (22) is formed below wells (10) and (12) and functions as a low resistance AC ground plane. This low resistivity region (22) collects noise signals that propagate between digital circuit blocks (6) and analog circuit blocks (8).
    Type: Application
    Filed: November 26, 2002
    Publication date: May 27, 2004
    Applicant: Motorola, Inc.
    Inventors: Wen Ling M. Huang, Sushil Bharatan, Carl Kyono, David J. Monk, Kun-Hin To, Pamela J. Welch
  • Publication number: 20040048410
    Abstract: A method for creating a MEMS structure is provided. In accordance with the method, a substrate (53) is provided having a sacrificial layer (55) disposed thereon and having a layer of silicon (57) disposed over the sacrificial layer. A first trench (59) is created which extends through the silica layer and the sacrificial layer and which separates the sacrificial layer into a first region (61) enclosed by the first trench and a second region (63) exterior to the first trench. A first material (65) is deposited into the first trench such that the first material fills the first trench to a depth at least equal to the thickness of the sacrificial layer. A second trench (71) is created exterior to the first trench which extends through at least the silicon layer and exposes at least a portion of the second region of the sacrificial layer.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Applicant: Motorola Inc.
    Inventors: Gary J. O'Brien, David J. Monk
  • Patent number: 6539308
    Abstract: A method for processing data from dual sensor receivers to produce a combined seismic trace. A first seismic trace is received from a geophone and second seismic trance from a hydrophone in a dual sensor receiver. This first and second seismic traces are transformed into a first and second seismic spectrum. The seismic spectrums are deghosted to obtain deghosted spectrums. The seismic spectra may be added to obtain a deghosted third spectrum. An inverse power is computed for each of the deghosted spectra. The inverse powers for each deghosted spectra are divided by sums of the deghosted spectra to obtain diversity filters. The first and third diversity filters are applied to the first seismic spectrum to obtain a scaled first seismic spectrum. The other scaled spectra are formed in a like manner. The diversity scaled seismic spectrum is inversely transformed to obtain the combined seismic trace.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: March 25, 2003
    Assignee: Input/Output Inc.
    Inventors: David J. Monk, James A. Musser
  • Publication number: 20030028326
    Abstract: A method for processing data from dual sensor receivers to produce a combined seismic trace. A first seismic trace is received from a geophone and second seismic trance from a hydrophone in a dual sensor receiver. This first and second seismic traces are transformed into a first and second seismic spectrum. The seismic spectrums are deghosted to obtain deghosted spectrums. The seismic spectra may be added to obtain a deghosted third spectrum. An inverse power is computed for each of the deghosted spectra. The inverse powers for each deghosted spectra are divided by sums of the deghosted spectra to obtain diversity filters. The first and third diversity filters are applied to the first seismic spectrum to obtain a scaled first seismic spectrum. The other scaled spectra are formed in a like manner. The diversity scaled seismic spectrum is inversely transformed to obtain the combined seismic trace.
    Type: Application
    Filed: November 1, 2001
    Publication date: February 6, 2003
    Applicant: Input/Output
    Inventors: David J. Monk, James A. Musser
  • Publication number: 20030005782
    Abstract: A component includes a housing (110, 1110) at least partially defining a cavity (125, 1125), a sensor element (105) located in the cavity, and a support member (340, 1140) located over the cavity, located over at least a portion of the housing, and having a hole (341, 1141) over the cavity. The component also includes a filter (345, 700, 800, 1045) located over the support member and located over the hole in the support member.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 9, 2003
    Applicant: Motorola, Inc.
    Inventors: William G. McDonald, David J. Monk, James E. Hannibal, Slobodan Petrovic
  • Patent number: 6472243
    Abstract: A capacitive pressure sensor (10) utilizes a diaphragm (38) that is formed along with forming gates (56,57) of active devices on the same semiconductor substrate (11).
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: October 29, 2002
    Assignee: Motorola, Inc.
    Inventors: Bishnu P. Gogoi, David J. Monk, David W. Odle, Kevin D. Neumann, Donald L. Hughes, Jr., John E. Schmiesing, Andrew C. McNeil, Richard J. August
  • Patent number: 6426239
    Abstract: A semiconductor component comprises a substrate (101), a two flexible pressure sensor diaphragms (106, 303) supported by the substrate (101), and a fixed electrode (203) between the two diaphragms (106, 303). The two diaphragms (106, 303) and the fixed electrode (203) are electrodes of two differential capacitors. The substrate (101) has a hole (601) extending from one surface (107) of the substrate (101) to an opposite surface (108) of the substrate (101). The hole (601) is located underneath the two diaphragms (106, 303), and the hole (601) at the opposite surfaces (107, 108) of the substrate (101) is preferably larger than the hole (601) at an interior portion of the substrate (101).
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: July 30, 2002
    Assignee: Motorola, Inc.
    Inventors: Bishnu P. Gogoi, David J. Monk
  • Publication number: 20020072144
    Abstract: A capacitive pressure sensor (10) utilizes a diaphragm (38) that is formed along with forming gates (56,57) of active devices on the same semiconductor substrate (11).
    Type: Application
    Filed: December 11, 2000
    Publication date: June 13, 2002
    Inventors: Bishnu P. Gogoi, David J. Monk, David W. Odle, Kevin D. Neumann, Donald L. Hughes, John E. Schmiesing, Andrew C. McNeil, Richard J. August
  • Patent number: 6401545
    Abstract: Selective encapsulation of a micro electro-mechanical pressure sensor provides for protection of the wire bands (140) through encapsulation while permitting the pressure sensor diaphragm (121) to be exposed to ambient pressure without encumbrance or obstruction. Selective encapsulation is made possible by the construction of a protective dam (150) around the outer perimeter of a pressure sensor diaphragm (121) to form a wire bond cavity region between the protective dam (150) and the device housing (105). The wire bond cavity may be encapsulated with an encapsulation gel (160) or by a vent cap (170). Alternatively, the protective dam (150) may be formed by a glass frit pattern (152) bonding a cap wafer (151) to a device wafer (125) and then dicing the two-wafer combination into individual dies with protective dams attached.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: June 11, 2002
    Assignee: Motorola, Inc.
    Inventors: David J. Monk, Song Woon Kim, Kyujin Jung, Bishnu Gogoi, Gordon Bitko, Bill McDonald, Theresa A. Maudie, Dave Mahadevan
  • Publication number: 20020050170
    Abstract: A physical sensor component includes a housing (110) having a cavity (112), a pressure sensor device (120) mounted in the cavity of the housing, and a chemically selective and physically selective filter (153) overlying the cavity of the housing and separated from the pressure sensor device.
    Type: Application
    Filed: October 28, 1999
    Publication date: May 2, 2002
    Inventors: SLOBODAN PETROVIC, HOLLY JEAN MILLER, DAVID J. MONK
  • Patent number: 6367624
    Abstract: Disclosed is an optical component packaging assembly including a rectangular plastic box with an upper half and a lower half. In the lower half, a thermal plastic vacuum formed insert is positioned within the lower half. The lower insert has a recess. The recess has opposed convex ends and central finger recesses. The opposed convex ends prevent the end faces of the optical component from being brought into contact with the insert. The convex ends may be v-shaped or semi-circular. The finger recesses provide convenient access to the laser rod so that the person unpackaging the laser rod from the optical component packaging is most likely to engage the laser rod at a center portion thereof rather than grasping the laser rod at the end faces thereof, thereby inadvertently damaging the optical surfaces of the laser rod.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: April 9, 2002
    Assignee: Northrop Grumman Corporation
    Inventors: Paul W. Szczepanski, David J. Monks
  • Patent number: 6352874
    Abstract: A method of manufacturing a sensor includes forming a first electrode (120, 1120), forming a sacrificial layer (520) over the first electrode, and forming a layer (130) over the sacrificial layer where a second electrode (131, 831) is located in the layer. The method further includes removing the sacrificial layer after forming the layer to form a cavity (140) between the first and second electrodes and then sealing the cavity between the first and second electrodes. The layer is supported over the first electrode by a post (133, 833) in the cavity, and the second electrode is movable relative to the first electrode and is movable in response to a pressure external to the cavity.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: March 5, 2002
    Assignee: Motorola Inc.
    Inventors: Andrew C. McNeil, David J. Monk, Bishnu P. Gogoi
  • Patent number: 6314371
    Abstract: A method is disclosed for processing of dual sensor OBC data that corrects for angular incidence angle, corrects for estimated reflectivity, and combines the corrected sensor traces using an optimal diversity scaling technique. In one embodiment, the disclosed method takes seismic traces from a geophone and a hydrophone, corrects the geophone trace for the incidence angle, determines diversity filters for optimally combining the geophone and hydrophone traces, applies the diversity filters, estimates a reflectivity coefficient for the ocean bottom (potentially for different angles of reflection), scales the geophone data according to the reflectivity, and re-applies the diversity filters to obtain a combined trace. The combined trace is expected to have various artifacts eliminated, including ghosting and reverberation, and is expected to have an optimally determined signal-to-noise ratio.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: November 6, 2001
    Assignee: Input/Output, Inc.
    Inventor: David J Monk
  • Patent number: 6156585
    Abstract: A semiconductor component comprises a substrate (101), a two flexible pressure sensor diaphragms (106, 303) supported by the substrate (101), and a fixed electrode (203) between the two diaphragms (106, 303). The two diaphragms (106, 303) and the fixed electrode (203) are electrodes of two differential capacitors. The substrate (101) has a hole (601) extending from one surface (107) of the substrate (101) to an opposite surface (108) of the substrate (101). The hole (601) is located underneath the two diaphragms (106, 303), and the hole (601) at the opposite surfaces (107, 108) of the substrate (101) is preferably larger than the hole (601) at an interior portion of the substrate (101).
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: December 5, 2000
    Assignee: Motorola, Inc.
    Inventors: Bishnu P. Gogoi, David J. Monk