Patents by Inventor David L. Harmon

David L. Harmon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131013
    Abstract: The present disclosure provides tetrahydro-1H-pyrido[3,4-b]indole compounds or a pharmaceutically acceptable salt, solvate, hydrate, prodrug, stereoisomer, tautomer, rotamer, N-oxide and/or substituted derivative or, optionally in a pharmaceutical composition, for the modulation of disorders mediated by estrogen, or other disorders as more fully described herein.
    Type: Application
    Filed: May 1, 2023
    Publication date: April 25, 2024
    Inventors: David C. Myles, Peter J. Kushner, Cyrus L. Harmon
  • Patent number: 10968619
    Abstract: A construction technique, for example for residential, light commercial and multifamily building construction, involving pre-fabricated elements. The elements include prefabricated structural components and prefabricated surface components. A technique of incremental building includes assembling a building structure using these pre-fabricated elements.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 6, 2021
    Inventor: David L. Harmon
  • Publication number: 20200018057
    Abstract: A construction technique, for example for residential, light commercial and multifamily building construction, involving pre-fabricated elements. The elements include prefabricated structural components and prefabricated surface components. A technique of incremental building includes assembling a building structure using these pre-fabricated elements.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 16, 2020
    Inventor: David L. Harmon
  • Patent number: 8796108
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Publication number: 20130299938
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Patent number: 8492866
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Patent number: 8486796
    Abstract: A method of forming a semiconductor structure includes: forming a resistor over a substrate; forming at least one first contact in contact with the resistor; and forming at least one second contact in contact with the resistor. The resistor is structured and arranged such that current flows from the at least one first contact to the at least one second contact through a central portion of the resistor. The resistor includes at least one extension extending laterally outward from the central portion in a direction parallel to the current flow. The method includes sizing the at least one extension based on a thermal diffusion length of the resistor.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: David L. Harmon, Joseph M. Lukaitis, Stewart E. Rauch, III, Robert R. Robison, Dustin K. Slisher, Jeffrey H. Sloan, Timothy D. Sullivan, Kimball M. Watson
  • Publication number: 20130175656
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Applicant: International Business Machines Corporation
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Patent number: 8480302
    Abstract: The present invention provides a micro-electro-mechanical-system (MEMS) temperature sensor that employs a suspended spiral comprising a material with a positive coefficient of thermal expansion. The thermal expansion of the suspended spiral is guided to by a set of guideposts to provide a linear movement of the free end of the suspended spiral, which is converted to an electrical signal by a set of conductive rotor azimuthal fins that are interdigitated with a set of conductive stator azimuthal fins by measuring the amount of capacitive coupling therebetween. Real time temperature may thus be measured through the in-situ measurement of the capacitive coupling. Optionally, the MEMS temperature sensor may have a ratchet and a pawl to enable ex-situ measurement.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jason P. Gill, David L. Harmon, Timothy D. Sullivan
  • Publication number: 20120126370
    Abstract: A method of forming a semiconductor structure includes: forming a resistor over a substrate; forming at least one first contact in contact with the resistor; and forming at least one second contact in contact with the resistor. The resistor is structured and arranged such that current flows from the at least one first contact to the at least one second contact through a central portion of the resistor. The resistor includes at least one extension extending laterally outward from the central portion in a direction parallel to the current flow. The method includes sizing the at least one extension based on a thermal diffusion length of the resistor.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. HARMON, Joseph M. LUKAITIS, Stewart E. RAUCH, III, Robert R. ROBISON, Dustin K. SLISHER, Jeffrey H. SLOAN, Timothy D. SULLIVAN, Kimball M. WATSON
  • Publication number: 20120076172
    Abstract: The present invention provides a micro-electro-mechanical-system (MEMS) temperature sensor that employs a suspended spiral comprising a material with a positive coefficient of thermal expansion. The thermal expansion of the suspended spiral is guided to by a set of guideposts to provide a linear movement of the free end of the suspended spiral, which is converted to an electrical signal by a set of conductive rotor azimuthal fins that are interdigitated with a set of conductive stator azimuthal fins by measuring the amount of capacitive coupling therebetween. Real time temperature may thus be measured through the in-situ measurement of the capacitive coupling. Optionally, the MEMS temperature sensor may have a ratchet and a pawl to enable ex-situ measurement.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jason P. Gill, David L. Harmon, Timothy D. Sullivan
  • Patent number: 7511378
    Abstract: An electronic structure having wiring, and an associated method of designing the structure, for limiting a temperature gradient in the wiring. The electronic structure includes a substrate having a layer that includes a first and second wire which do not physically touch each other. The first and second wires are adapted to be at an elevated temperature due to Joule heating in relation to electrical current density in the first and second wires. The first wire is electrically and thermally coupled to the second wire by an electrically and thermally conductive structure that exists outside of the layer. The width of the second wire is tailored so as to limit a temperature gradient in the first wire to be below a threshold value that is predetermined to be sufficiently small so as to substantially mitigate adverse effects of electromigration in the first wire.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jason P. Gill, David L. Harmon, Deborah M. Massey, Alvin W. Strong, Timothy D. Sullivan, Junichi Furukawa
  • Patent number: 7132318
    Abstract: Disclosed is a method and structure for altering an integrated circuit design having silicon over insulator (SOI) transistors. The method/structure prevents damage from charging during processing to the gate of SOI transistors by tracing electrical nets in the integrated circuit design, identifying SOI transistors that may have a voltage differential between the source/drain and gate as potentially damaged SOI transistors (based on the tracing of the electrical nets), and connecting a shunt device across the source/drain and the gate of each of the potentially damaged SOI transistors. Alternatively, the method/structure provides for connecting compensating conductors through a series device.
    Type: Grant
    Filed: December 4, 2004
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Henry A. Bonges, III, David L. Harmon, Terence B. Hook, Wing L. Lai
  • Patent number: 7096450
    Abstract: An electronic structure having wiring, and an associated method of designing the structure, for limiting a temperature gradient in the wiring. The electronic structure includes a substrate having a layer that includes a first and second wire which do not physically touch each other. The first and second wires are adapted to be at an elevated temperature due to Joule heating in relation to electrical current density in the first and second wires. The first wire is electrically and thermally coupled to the second wire by an electrically and thermally conductive structure that exists outside of the layer. The width of the second wire is tailored so as to limit a temperature gradient in the first wire to be below a threshold value that is predetermined to be sufficiently small so as to substantially mitigate adverse effects of electromigration in the first wire.
    Type: Grant
    Filed: June 28, 2003
    Date of Patent: August 22, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jason P. Gill, David L. Harmon, Deborah M. Massey, Alvin W. Strong, Timothy D. Sullivan, Junichi Furukawa
  • Patent number: 7067886
    Abstract: A method and structure alters an integrated circuit design having silicon over insulator (SOI) transistors. The method/structure prevents damage from charging during processing to the gate of SOI transistors by tracing electrical nets in the integrated circuit design, identifying SOI transistors that have a voltage differential between the source/drain and gate as potentially damaged SOI transistors (based on the tracing of the electrical nets), and connecting a shunt device across the source/drain and the gate of each of the potentially damaged SOI transistors. Alternatively, the method/structure provides for connecting compensating conductors through a series device.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: June 27, 2006
    Assignee: International Business Machines Corporation
    Inventors: Henry A. Bonges, III, David L. Harmon, Terence B. Hook, Wing L. Lai
  • Publication number: 20040262031
    Abstract: An electronic structure having wiring, and an associated method of designing the structure, for limiting a temperature gradient in the wiring. The electronic structure includes a substrate having a layer that includes a first and second wire which do not physically touch each other. The first and second wires are adapted to be at an elevated temperature due to Joule heating in relation to electrical current density in the first and second wires. The first wire is electrically and thermally coupled to the second wire by an electrically and thermally conductive structure that exists outside of the layer. The width of the second wire is tailored so as to limit a temperature gradient in the first wire to be below a threshold value that is predetermined to be sufficiently small so as to substantially mitigate adverse effects of electromigration in the first wire.
    Type: Application
    Filed: June 28, 2003
    Publication date: December 30, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jason P. Gill, David L. Harmon, Deborah M. Massey, Alvin W. Strong, Timothy D. Sullivan, Junichi Furukawa
  • Patent number: 5618379
    Abstract: Disclosed is a process for depositing a conformal polymer coating on selected areas of a silicon substrate. The substrate is first exposed through a mask to a gaseous plasma so as to form a film of desired pattern, the plasma comprising a compound having strong electron donating characteristics. Then, the patterned film and the remaining substrate not covered by the film are exposed to the vapor of a monomer, which condenses and polymerizes on the exposed substrate surfaces, but not on the film. The film serves to inhibit substantial deposition of the coating, so as to provide a selective deposition, where the coating is formed only on those areas of the substrate where desired.
    Type: Grant
    Filed: April 1, 1991
    Date of Patent: April 8, 1997
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Armacost, Steven A. Grundon, David L. Harmon, Son V. Nguyen, John F. Rembetski
  • Patent number: 5539154
    Abstract: A plasma enhanced chemical vapor deposition process for producing a fluorinated silicon nitride film on a substrate is disclosed. The process utilizes a mixture of silane, perfluorosilane and nitrogen to produce films of high conformality and stability. The silane and perfluorosilane in the mixture are in a ratio of 0.05 to 1 on a volume basis. The preferred silane is SiH.sub.4 and the preferred perfluorosilane is SiF.sub.4. Films prepared by the process are disclosed and their properties are described.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: July 23, 1996
    Assignee: International Business Machines Corporation
    Inventors: Son V. Nguyen, David M. Dobuzinsky, Douglas J. Dopp, David L. Harmon
  • Patent number: 5462812
    Abstract: A plasma enhanced chemical vapor deposition process for producing a fluorinated silicon nitride film on a substrate is disclosed. The process utilizes a mixture of silane, perfluorosilane and nitrogen to produce films of high conformality and stability. The silane and perfluorosilane in the mixture are in a ratio of 0.05 to 1 on a volume basis. The preferred silane is SiH.sub.4 and the preferred perfluorosilane is SiF.sub.4. Films prepared by the process are disclosed and their properties are described.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: October 31, 1995
    Inventors: Son V. Nguyen, David M. Dobuzinsky, Douglas J. Dopp, David L. Harmon
  • Patent number: D674514
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 15, 2013
    Inventor: David L. Harmon