Patents by Inventor David L. Kencke

David L. Kencke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150194596
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 9, 2015
    Inventors: Kaan OGUZ, Mark L. DOCZY, Brian DOYLE, Uday SHAH, David L. KENCKE, Roksana GOLIZADEH MOJARAD, Robert S. CHAU
  • Publication number: 20150091110
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and damping are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A first free magnetic layer is disposed above the dielectric layer. A second free magnetic layer is magnetically coupled with the first free magnetic layer.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Charles C. Kuo, Kaan Oguz, Mark L. Doczy, Brian S. Doyle, Satyarth Suri, Robert S. Chau, David L. Kencke, Roksana Golizadeh Mojarad, Anurag Chaudhry
  • Publication number: 20150091067
    Abstract: An insulating layer is deposited over a transistor structure. The transistor structure comprises a gate electrode over a device layer on a substrate. The transistor structure comprises a first contact region and a second contact region on the device layer at opposite sides of the gate electrode. A trench is formed in the first insulating layer over the first contact region. A metal-insulator phase transition material layer with a S-shaped IV characteristic is deposited in the trench or in the via of the metallization layer above on the source side.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Ravi Pillarisetty, Brian S. Doyle, Elijah V. Karpov, David L. Kencke, Uday Shah, Charles C. Kuo, Robert S. Chau
  • Patent number: 8980650
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 17, 2015
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Mark L. Doczy, Brian Doyle, Uday Shah, David L. Kencke, Roksana Golizadeh Mojarad, Robert S. Chau
  • Patent number: 8913422
    Abstract: Switching current in Spin-Transfer Torque Memory (STTM) can be decreased. A magnetic memory cell is driven with a first pulse on a write line of the memory cell to heat the cell. The cell is then driven with a second pulse on the write line to set the state of the cell.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 16, 2014
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Kaan Oguz, Satyarth Suri, Robert S. Chau, Charles C. Kuo, Mark L. Doczy, David L. Kencke
  • Publication number: 20140349415
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Kaan Oguz, Mark L. Doczy, Brian Doyle, Uday Shah, David L. Kencke, Roksana Golizadeh Mojarad, Robert S. Chau
  • Publication number: 20140329337
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20140299953
    Abstract: The present disclosure relates to the fabrication of spin transfer torque memory elements for non-volatile microelectronic memory devices. The spin transfer torque memory element may include a magnetic tunneling junction connected with specifically sized and/or shaped fixed magnetic layer that can be positioned in a specific location adjacent a free magnetic layer. The shaped fixed magnetic layer may concentrate current in the free magnetic layer, which may result in a reduction in the critical current needed to switch a bit cell in the spin transfer torque memory element.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Dmitri E. Nikonov, Robert S. Chau
  • Patent number: 8841644
    Abstract: Thermal isolation in memory cells is described herein. A number of embodiments include a storage element, a selector device formed in series with the storage element, and an electrode between the storage element and the selector device, wherein the electrode comprises an electrode material having a thermal conductivity of less than 0.15 Watts per Kelvin-centimeter (W/K-cm).
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: September 23, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Elijah V. Karpov, David L. Kencke
  • Patent number: 8836056
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: September 16, 2014
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Mark L. Doczy, Brian Doyle, Uday Shah, David L. Kencke, Roksana Golizadeh Mojarad, Robert S. Chau
  • Patent number: 8796794
    Abstract: The present disclosure relates to the fabrication of spin transfer torque memory elements for non-volatile microelectronic memory devices. The spin transfer torque memory element may include a magnetic tunneling junction connected with specifically sized and/or shaped fixed magnetic layer that can be positioned in a specific location adjacent a free magnetic layer. The shaped fixed magnetic layer may concentrate current in the free magnetic layer, which may result in a reduction in the critical current needed to switch a bit cell in the spin transfer torque memory element.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Dmitri E. Nikonov, Robert S. Chau
  • Publication number: 20140209892
    Abstract: Techniques, materials, and circuitry are disclosed which enable low-voltage, embedded memory applications. In one example embodiment, an embedded memory is configured with a bitcell having a memory element and a selector element serially connected between an intersection of a wordline and bitline. The selector element can be implemented, for instance, with any number of crystalline materials that exhibit an S-shaped current-voltage (IV) curve, or that otherwise enables a snapback in the selector voltage after the threshold criteria is exceeded. The snapback of the selector is effectively exploited to accommodate the ON-state voltage of the selector under a given maximum supply voltage, wherein without the snapback, the ON-state voltage would exceed that maximum supply voltage. In some example embodiments, the maximum supply voltage is less than 1 volt (e.g., 0.9 volts or less).
    Type: Application
    Filed: April 12, 2012
    Publication date: July 31, 2014
    Inventors: Charles Kuo, Elijah V. Karpov, Brian S. Doyle, David L. Kencke, Robert S. Chau
  • Publication number: 20140204661
    Abstract: A magnetic memory having memory elements each with two magnetic tunneling junction (MTJ) devices is disclosed. The devices in each element are differentially programmed with complementary data. The devices for each element are stacked one above the other so that the element requires no more substrate area than a single MTJ device.
    Type: Application
    Filed: December 22, 2011
    Publication date: July 24, 2014
    Inventors: Brian S. Doyle, Arijit Raychowdhury, Yong Ju Lee, Charles C. Kuo, Kaan Oguz, David L. Kencke, Robert S. Chau, Roksana Golizadeh Mojarad
  • Patent number: 8786040
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20140175583
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20140177326
    Abstract: Spin transfer torque memory (STTM) devices incorporating a field plate for application of an electric field to reduce a critical current required for transfer torque induced magnetization switching. Embodiments utilize not only current-induced magnetic filed or spin transfer torque, but also electric field induced manipulation of magnetic dipole orientation to set states in a magnetic device element (e.g., to write to a memory element). An electric field generated by a voltage differential between an MTJ electrode and the field plate applies an electric field to a free magnetic layer of a magnetic tunneling junction (MTJ) to modulate one or more magnetic properties over at least a portion of the free magnetic layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Brian S. DOYLE, Charles C. KUO, David L. KENCKE, Roksana GOLIZADEH MOJARAD, Uday SHAH
  • Publication number: 20140167191
    Abstract: A method of centering a contact on a layer of a magnetic memory device. In one embodiment, a spacers is formed in an opening surrounding the upper layer and the contact is formed within the spacer. The spacer is formed from an anisotropically etched conformal layer deposited on an upper surface and into the opening.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 19, 2014
    Inventors: Brian S. Doyle, Yong Ju Lee, Charles C. Kuo, David L. Kencke, Kaan Oguz, Roksana Golizadeh Mojarad, Uday Shah
  • Publication number: 20140084398
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Inventors: Kaan OGUZ, Mark L. DOCZY, Brian DOYLE, Uday SHAH, David L. KENCKE, Roksana GOLIZADEH MOJARAD, Robert S. CHAU
  • Publication number: 20140008602
    Abstract: Thermal isolation in memory cells is described herein. A number of embodiments include a storage element, a selector device formed in series with the storage element, and an electrode between the storage element and the selector device, wherein the electrode comprises an electrode material having a thermal conductivity of less than 0.15 Watts per Kelvin-centimeter (W/K-cm).
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Elijah V. Karpov, David L. Kencke
  • Publication number: 20130336045
    Abstract: Spin transfer torque memory (STTM) devices with half-metals and methods to write and read the devices are described. For example, a magnetic tunneling junction includes a free magnetic layer, a fixed magnetic layer, and a dielectric layer disposed between the free magnetic layer and the fixed magnetic layer. One or both of the free magnetic layer and the fixed magnetic layer includes a half-metal material at an interface with the dielectric layer.
    Type: Application
    Filed: December 19, 2011
    Publication date: December 19, 2013
    Inventors: Charles C. Kuo, Roksana Golizadeh Mojarad, Brian S. Doyle, David L. Kencke, Kaan Oguz, Robert S. Chau