Patents by Inventor David L. Questad

David L. Questad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9455234
    Abstract: A fixture assembly and method of forming a chip assembly is provided. The fixture assembly includes a first plate having an opening sized to accommodate a chip mounted on a laminate. The fixture assembly further includes a second plate mated to the first plate by at least one mechanical fastening mechanism. The fixture assembly further includes a space defined by facing surfaces of the first plate and the second plate and confined by a raised stepped portion of at least one of the first plate and the second plate. The space is coincident with the opening. The space is sized and shaped such that the laminate is confined within the space and directly abuts the stepped portion and the facing surfaces of the first plate and the second plate to be confined in X, Y and Z directions.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: September 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas E. Lombardi, Donald Merte, Gregg B. Monjeau, David L. Questad, Son K. Tran
  • Patent number: 9099458
    Abstract: A stacked via structure for reducing vertical stiffness includes: a plurality of stacked vias, each via disposed on a disc-like structure. The disc-like structure includes a platted through hole landing supporting the plurality of stacked vias. The platted through hole landing includes an etched pattern.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karan Kacker, Douglas O. Powell, David L. Questad, David J. Russell, Sri M. Sri-Jayantha
  • Patent number: 9018760
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Patent number: 8957531
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Publication number: 20150036716
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
  • Patent number: 8927334
    Abstract: Structures and methods for forming good electrical connections between an integrated circuit (IC) chip and a chip carrier of a flip chip package include forming one of: a tensile layer on a front side of the IC chip, which faces a tops surface of the chip carrier, and a compressive layer on the backside of the IC chip. Addition of one of: a tensile layer to the front side of the IC chip and a compressive layer the backside of the IC chip, may reduce or modulate warpage of the IC chip and enhance wetting of opposing solder surfaces of solder bumps on the IC chip and solder formed on flip chip (FC) attaches of a chip carrier during making of the flip chip package.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Nathalie Normand, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8866026
    Abstract: A stacked via structure for reducing vertical stiffness includes: a plurality of stacked vias, each via disposed on a disc-like structure. The disc-like structure includes a platted through hole landing with a thickness of substantially 3 ?m. The platted through hole landing includes an etched pattern and a copper top surface.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Karan Kacker, Douglas O. Powell, David L. Questad, David J. Russell, Sri M. Sri-Jayantha
  • Patent number: 8796133
    Abstract: A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Timothy H. Daubenspeck, Mark C. H. Lamorey, Howard S. Landis, Xiao Hu Liu, David L. Questad, Thomas M. Shaw, David B. Stone
  • Publication number: 20140197228
    Abstract: A fixture assembly and method of forming a chip assembly is provided. The fixture assembly includes a first plate having an opening sized to accommodate a chip mounted on a laminate. The fixture assembly further includes a second plate mated to the first plate by at least one mechanical fastening mechanism. The fixture assembly further includes a space defined by facing surfaces of the first plate and the second plate and confined by a raised stepped portion of at least one of the first plate and the second plate. The space is coincident with the opening. The space is sized and shaped such that the laminate is confined within the space and directly abuts the stepped portion and the facing surfaces of the first plate and the second plate to be confined in X, Y and Z directions.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas E. LOMBARDI, Donald MERTE, Gregg B. MONJEAU, David L. QUESTAD, Son K. TRAN
  • Patent number: 8759151
    Abstract: A fixture assembly and method of forming a chip assembly is provided. The fixture assembly includes a first plate having an opening sized to accommodate a chip mounted on a laminate. The fixture assembly further includes a second plate mated to the first plate by at least one mechanical fastening mechanism. The fixture assembly further includes a space defined by facing surfaces of the first plate and the second plate and confined by a raised stepped portion of at least one of the first plate and the second plate. The space is coincident with the opening. The space is sized and shaped such that the laminate is confined within the space and directly abuts the stepped portion and the facing surfaces of the first plate and the second plate to be confined in X, Y and Z directions.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: June 24, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas E. Lombardi, Donald Merte, Gregg B. Monjeau, David L. Questad, Son K. Tran
  • Patent number: 8756546
    Abstract: A computer-implemented method provides an elastic modulus map of a chip carrier of a flip chip package. Design data including dielectric and conductive design elements of each of vertically aligned sub-areas of each of the layers of the chip carrier are modeled as springs to provide the elastic modulus map. Determining the elastic modulus of the sub-areas of the chip carrier identifies probable mechanical failure sites during chip-join and cools down of the flip chip package. Modifying a footprint of solder bumps to the chip carrier reduces stresses applied to the identified probable mechanical failure sites. Modifying the chip carrier design to reduce a stiffness of sub-areas associated with identified probable mechanical failure sites also reduces stresses from chip-join and cool-down.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Erwin B. Cohen, Mark C. H. Lamorey, Marek A. Orlowski, Douglas O. Powell, David L. Questad, David B. Stone, Paul R. Walling
  • Publication number: 20140077367
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Publication number: 20140033148
    Abstract: A computer-implemented method provides an elastic modulus map of a chip carrier of a flip chip package. Design data including dielectric and conductive design elements of each of vertically aligned sub-areas of each of the layers of the chip carrier are modeled as springs to provide the elastic modulus map. Determining the elastic modulus of the sub-areas of the chip carrier identifies probable mechanical failure sites during chip-join and cools down of the flip chip package. Modifying a footprint of solder bumps to the chip carrier reduces stresses applied to the identified probable mechanical failure sites. Modifying the chip carrier design to reduce a stiffness of sub-areas associated with identified probable mechanical failure sites also reduces stresses from chip-join and cool-down.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Erwin B. Cohen, Mark C.H. Lamorey, Marek A. Orlowski, Douglas O. Powell, David L. Questad, David B. Stone, Paul R. Walling
  • Patent number: 8637392
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Publication number: 20140021622
    Abstract: A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: international Business Machines Corporation
    Inventors: Griselda Bonilla, Timothy H. Daubenspeck, Mark C.H. Lamorey, Howard S. Landis, Xiao Hu Liu, David L. Questad, Thomas M. Shaw, David B. Stone
  • Patent number: 8522430
    Abstract: A method of fabricating a substrate via structure in a substrate/chip assembly includes steps of: disposing a center via stack for electrical interconnects in the substrate/chip assembly; and providing a plurality of stacked vias surrounding the center via stack. The plurality of stacked vias encircle the center via stack, resulting in no isolated via stacks on the structure. The plurality of stacked vias have both functional and non-functional vias.
    Type: Grant
    Filed: July 14, 2012
    Date of Patent: September 3, 2013
    Assignee: International Business Macines Corporation
    Inventors: Karan Kacker, Douglas O. Powell, David L. Questad, David J. Russell, Sri M. Sri-Jayantha
  • Patent number: 8508043
    Abstract: A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8450849
    Abstract: An electrical conductor is connected to a first microcircuit element having a first connector site axis and a second microcircuit having a second connector site axis. The first microcircuit and the second microcircuit are separated by and operatively associated with a first electrical insulator layer. The conductor and the first microcircuit element are separated by and operatively associated with a second electrical insulator layer. At least one of the first electrical insulator layer and the second electrical insulator layer comprise a polymeric material. The microcircuit includes a UBM and solder connection to a FBEOL via opening. Sufficiently separating the first connector site axis and the second connector site axis so they are not concentric, decouples the UBM and solder connection to the FBEOL via opening. This eliminates or minimizes electromigration and the white bump problems. A process comprises manufacturing the microcircuit.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Minhua Lu, Eric D. Pefecto, David L. Questad, Sudipta K. Ray
  • Publication number: 20130119534
    Abstract: A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan
  • Publication number: 20130098176
    Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad