Patents by Inventor David Lidsky

David Lidsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030043428
    Abstract: A method and apparatus are presented for a tunable device for measuring the optical spectrum of a DWDM signal on a per channel basis. The device is an InP-semiconductor based tunable ring resonator. In a preferred embodiment the typical size of the chip is approximately 250&mgr;m×250&mgr;m. The three main sections of the device comprise a straight input passive waveguide, a straight output absorbing waveguide, and a tunable ring resonator. The ring resonator sets up a wavelength selective resonant cavity, allowing measurement of OP and OSNR across the free spectral range of the device, centered at a nominal service wavelength. In the preferred embodiment, the device can measure the OP and OSNR of an arbitrary demultiplexed DWDM signal, with a measurement time of approximately 225 microseconds. Inasmuch as the device is simply measuring optical performance parameters within a particular frequency (i.e.
    Type: Application
    Filed: August 21, 2002
    Publication date: March 6, 2003
    Inventors: David Lidsky, Jithamithra Sarathy
  • Publication number: 20030002117
    Abstract: A system, method and device for AO2R is presented. The AO2R system presented is redundant, containing multiple pathways for the input and output signals to travel. The system carries out both the regeneration and reshaping functions in the optical domain, and returns a clean output signal at the same bit rate and in the same format as the input signal, on a wavelength of choice. As an all optical device, the apparatus is bit rate and format transparent, and requires no optical-electrical-optical conversion. The system's built in redundancy and symmetry allows less than perfect yields on components to be tolerated, thus increasing the utility of devices manufactured with less than perfect yields. In alternative embodiments the redundancy aspect of the invention can be extended to any optical signal processing device, thus facilitating high availability optical signal processing.
    Type: Application
    Filed: May 15, 2002
    Publication date: January 2, 2003
    Inventors: Gaurav Naik, Jithamithra Sarathy, Michael Evans, David Lidsky
  • Publication number: 20020190261
    Abstract: A method and apparatus for a tunable optical spectrum analyzer that can measure the optical spectrum of a demultiplexed DWDM signal are presented. The signal level and Optical Signal to Noise Ratio (OSNR) of an individual channel of the DWDM signal can be obtained from the measured optical spectrum. The device employs a rapid tuning and detection technique to obtain the optical spectrum of the incoming signal. In a preferred embodiment the apparatus is fabricated on a single chip resulting in a compact measurement device. Using the device of the preferred embodiment, single channel OSNR can be determined in as small a time interval as approximately 225 microseconds. Using an array of these devices an entire DWDM mixed signal can be monitored as to OP and OSNR in the same time interval.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 19, 2002
    Inventors: Jithamithra Sarathy, Chinnabbu Ekambaram, David Lidsky, Bharat Dave, Boris Stefanov, Tan B. Thai, Ronald Simprini, Julio Martinez, Gaurav Naik
  • Publication number: 20020191888
    Abstract: A single device for amplifying and multiplying an optical signal is presented. The device is an InP-semiconductor-based amplified multimode interferometer. The three main sections of the device are an input port, an interference and amplification region and N output ports. The input port is a single channel waveguide. The interference and amplification section supports a large number of modes which interfere with one another. By carefully choosing the length of the interference/amplification region to correspond to the constructive interference condition for N equally spaced channel modes, we can reproduce N amplified signals. In an alternate embodiment, by shaping the gain region into a cross pattern, corner reflections and consequent side channel signal distortion in the output can be minimized.
    Type: Application
    Filed: May 15, 2002
    Publication date: December 19, 2002
    Inventors: David Lidsky, Jithamithra Sarathy
  • Publication number: 20020181087
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020181084
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020181085
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020053677
    Abstract: A method and apparatus for a tunable optical spectrum analyzer that can measure the optical spectrum of a demultiplexed DWDM signal are presented. The signal level and Optical Signal to Noise Ratio (OSNR) of an individual channel of the DWDM signal can be obtained from the measured optical spectrum. The device employs a rapid tuning and detection technique to obtain the optical spectrum of the incoming signal. In a preferred embodiment the apparatus is fabricated on a single chip resulting in a compact measurement device. Using the device of the preferred embodiment, single channel OSNR can be determined in as small a time interval as approximately 225 microseconds. Using an array of these devices an entire DWDM mixed signal can be monitored as to OP and OSNR in the same time interval.
    Type: Application
    Filed: May 9, 2001
    Publication date: May 9, 2002
    Inventors: Jithamithra Sarathy, Chinnabbu Ekambaram, David Lidsky, Bharat Dave, Boris Stefanow, Tan B. Thai, Ronald Simprini, Julio Martinez, Gaurav Naik
  • Publication number: 20020041428
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: May 4, 2001
    Publication date: April 11, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai