Patents by Inventor David M. Fried

David M. Fried has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120205781
    Abstract: A semiconductor structure includes a semiconductor substrate having a first region of a first polarity and a second region of a second polarity adjacent to the first region; and a first terminal including: a first deep trench located in the first region, a first node dielectric abutting all but an upper portion of sidewalls and a bottom of the first deep trench; a first conductive inner electrode inside the first node dielectric and electrically insulated from the first region by the first node dielectric; and a first electrical contact electrically coupling the first conductive inner electrode to the first region.
    Type: Application
    Filed: April 19, 2012
    Publication date: August 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES INCORPORATED
    Inventors: David M. Fried, Edward J. Nowak
  • Patent number: 8236632
    Abstract: An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Patent number: 8232624
    Abstract: A semiconductor structure includes a semiconductor substrate having a first region of a first polarity and a second region of a second polarity adjacent to the first region; and a first terminal including: a first deep trench located in the first region, a first node dielectric abutting all but an upper portion of sidewalls and a bottom of the first deep trench; a first conductive inner electrode inside the first node dielectric and electrically insulated from the first region by the first node dielectric; and a first electrical contact electrically coupling the first conductive inner electrode to the first region.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Joseph E. Nowak
  • Publication number: 20120187490
    Abstract: A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
    Type: Application
    Filed: March 21, 2012
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Publication number: 20120119778
    Abstract: A test structure for testing transistor gate structures in an IC device includes one or more probe pads formed at an active area of the IC device; one or more first conductive lines formed at the active area of the IC device, in electrical contact with the one or more probe pads; one or more second conductive lines formed at a gate conductor level of the IC device, in electrical contact with the one or more first conductive lines; and a gate electrode structure to be tested in electrical contact with the one or more second conductive lines; wherein the electrical contact between the one or more second conductive lines and the one or more first conductive lines is facilitated by a localized dielectric breakdown of a gate dielectric material disposed between the one or more second conductive lines and the one or more first conductive lines.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ishtiaq Ahsan, David M. Fried, Lidor Goren, Jiun-Hsin Liao
  • Publication number: 20120086077
    Abstract: An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: DAVID M FRIED, Jeffrey B. Johnson, Kevin McStay, Paul C. Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Patent number: 7956417
    Abstract: Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a <110> crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the <110> crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Yun-Yu Wang, Christopher D. Sheraw, Anthony G. Domenicucci, Linda Black, Judson R. Holt, David M. Fried
  • Publication number: 20110062555
    Abstract: A semiconductor structure includes a semiconductor substrate having a first region of a first polarity and a second region of a second polarity adjacent to the first region; and a first terminal including: a first deep trench located in the first region, a first node dielectric abutting all but an upper portion of sidewalls and a bottom of the first deep trench; a first conductive inner electrode inside the first node dielectric and electrically insulated from the first region by the first node dielectric; and a first electrical contact electrically coupling the first conductive inner electrode to the first region.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES INCORPORATED
    Inventors: David M. Fried, Edward J. Nowak
  • Patent number: 7884396
    Abstract: Disclosed are embodiments of a semiconductor structure with a partially self-aligned contact in lower portion of the contact is enlarged to reduce resistance without impacting device yield. Additionally, the structure optionally incorporates a thick middle-of-the-line (MOL) nitride stress film to enhance carrier mobility. Embodiments of the method of forming the structure comprise forming a sacrificial section in the intended location of the contact. This section is patterned so that it is self-aligned to the gate electrodes and only occupies space that is intended for the future contact. Dielectric layer(s) (e.g., an optional stress layer followed by an interlayer dielectric) may be deposited once the sacrificial section is in place. Conventional contact lithography is used to etch a contact hole through the dielectric layer(s) to the sacrificial section. The sacrificial section is then selectively removed to form a cavity and the contact is formed in the cavity and contact hole.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gregory Costrini, David M. Fried
  • Patent number: 7884411
    Abstract: An area-efficient gated diode includes a semiconductor layer of a first conductivity type, an active region of a second conductivity type formed in the semiconductor layer proximate an upper surface thereof, and at least one trench electrode extending vertically through the active region and at least partially into the semiconductor layer. A first terminal of the gated diode is connected to the trench electrode, and a second terminal is connected to the active region. The gated diode is operative in one of at least first an second modes as a function of a voltage potential applied between the first and second terminals. The first mode is characterized by the creation of an inversion layer in the semiconductor layer surrounding the trench electrode. The gated diode has a first capacitance in the first mode and a second capacitance in the second mode, the first capacitance being greater than the second capacitance.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Robert H. Dennard, David M. Fried, Wing Kin Luk
  • Patent number: 7875550
    Abstract: Disclosed are embodiments of a semiconductor structure with a partially selfaligned contact in lower portion of the contact is enlarged to reduce resistance without impacting device yield. Additionally, the structure optionally incorporates a thick middle-of-the-line (MOL) nitride stress film to enhance carrier mobility. Embodiments of the method of forming the structure comprise forming a sacrificial section in the intended location of the contact. This section is patterned so that it is self-aligned to the gate electrodes and only occupies space that is intended for the future contact. Dielectric layer(s) (e.g., an optional stress layer followed by an interlayer dielectric) may be deposited once the sacrificial section is in place. Conventional contact lithography is used to etch a contact hole through the dielectric layer(s) to the sacrificial section. The sacrificial section is then selectively removed to form a cavity and the contact is formed in the cavity and contact hole.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gregory Costrini, David M. Fried
  • Patent number: 7872310
    Abstract: A semiconductor structure and a system for fabricating an integrated circuit chip. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa. The system for fabricating an integrated circuit chip enables: providing a buried oxide layer on and in direct mechanical contact with a semiconductor wafer; and concurrently forming at least one fin-type field effect transistor and at least one thick-body device on the buried oxide layer.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, Jr., Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Publication number: 20100283089
    Abstract: Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a <110> crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the <110> crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicants: International Business Machines Corporation, GLOBAL FOUNDRIES, INC.
    Inventors: Yun-Yu Wang, Christopher D. Sheraw, Anthony G. Domenicucci, Linda Black, Judson R. Holt, David M. Fried
  • Patent number: 7820501
    Abstract: Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a <110> crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the <110> crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: October 26, 2010
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc
    Inventors: Yun-Yu Wang, Christopher D. Sheraw, Anthony G. Domenicucci, Linda Black, Judson R. Holt, David M. Fried
  • Patent number: 7645650
    Abstract: A method for forming a transistor. A semiconductor substrate is provided. The semiconductor substrate is patterned to provide a first body edge. A first gate structure of a first fermi level is provided adjacent the first body edge. The semiconductor substrate is patterned to provide a second body edge. The first and second body edges of the semiconductor substrate define a transistor body. A second gate structure of a second fermi level is provided adjacent the second body edge. A substantially uniform dopant concentration density is formed throughout the transistor body.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Meikei Ieong, K. Paul Muller, Edward J. Nowak, David M. Fried, Jed Rankin
  • Publication number: 20090305471
    Abstract: The present invention provides a semiconducting device structure including a thin SOI region, wherein the SOI device is formed with an optional single thin diffusion, i.e., offset, spacer and a single diffusion implant. The device silicon thickness is thin enough to permit the diffusion implants to abut the buried insulator but thick enough to form a contacting silicide. Stress layer liner films are used both over nFET and pFET device regions to enhance performance.
    Type: Application
    Filed: August 14, 2009
    Publication date: December 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, David M. Fried, John M. Hergenrother, Ghavam Shahidi, Jeffrey W. Sleight
  • Publication number: 20090134463
    Abstract: A semiconductor structure and a system for fabricating an integrated circuit chip. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa. The system for fabricating an integrated circuit chip enables: providing a buried oxide layer on and in direct mechanical contact with a semiconductor wafer; and concurrently forming at least one fin-type field effect transistor and at least one thick-body device on the buried oxide layer.
    Type: Application
    Filed: January 5, 2009
    Publication date: May 28, 2009
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, JR., Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Patent number: 7517806
    Abstract: A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin, and a second-type of FinFET which includes a second fin running parallel to the first fin. The invention also has an insulator fin positioned between the source/drain regions of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin and the second fin, such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., David M. Fried, Mark D. Jaffe, Edward J. Nowak, John J. Pekarik, Christopher S. Putnam
  • Publication number: 20090090974
    Abstract: A dual stress liner structure having a substantially planar interface between liners and a related method are disclosed. In one embodiment, a dual stress liner structure may include a tensile stress liner over an NFET, the NFET including a PFET adjacent thereto; and a compressive stress liner over the PFET, wherein an upper surface of the compressive stress liner is substantially planar with an upper surface of the tensile stress liner at an interface therebetween.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory Costrini, David M. Fried, Werner A. Rausch, Christopher D. Sheraw
  • Patent number: 7473970
    Abstract: An integrated circuit chip and a semiconductor structure. The integrated circuit chip includes: a thick-body device containing a semiconductor mesa and a doped body contact; and a field effect transistor on a first sidewall of a semiconductor mesa, wherein the doped body contact is on a second sidewall of the semiconductor mesa, and wherein the semiconductor mesa is disposed between the field effect transistor and the doped body contact. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, Jr., Edward J. Nowak, Jed H. Rankin, William R. Tonti