Patents by Inventor David M. Hoganson

David M. Hoganson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100274353
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: March 22, 2010
    Publication date: October 28, 2010
    Applicant: The General Hospital Corporation
    Inventors: Howard I. Pryor, David M. Hoganson, Joseph P. Vacanti
  • Publication number: 20100234678
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: October 9, 2009
    Publication date: September 16, 2010
    Applicants: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: Howard I. Pryor, Ira Spool, David M. Hoganson, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Publication number: 20100217290
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 26, 2010
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 7758654
    Abstract: The construct described herein allows opposing tissues to form adhesions with either side of the construct, as part of the natural healing process. The construct however is multi-layered, wherein the space between the layers provides the protection from unwanted adhesions forming between and bonding separate tissues. In one embodiment, this space between layers of the construct may be developed spontaneously, that is the multiple layers are released by design after a finite time and the opposing tissues are free to move independent of each other, free of adhesions.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: July 20, 2010
    Assignee: Kensey Nash Corporation
    Inventor: David M. Hoganson
  • Publication number: 20100094196
    Abstract: The systems basically comprise a delivery system for accessing the targeted tissue within the living being and introduction of at least one agent at select locations in the into the myocardium and other select tissues. The delivery systems are arranged to access the tissues of the heart. One or more of the systems can be utilized during transluminal, transthoracic and direct surgical access procedures. Where appropriate, for example in the case of intraventricular access, portions of the system are steerable to properly orient the device. The instruments may pierce the heart tissue and create channels extending from the endocardium, the epicardium, or the cardiac vessels. When tissue penetration is utilized, the device may include a feature to control the depth of penetration. To minimize bleeding through the channels the device can dilate small initial punctures that later contract down after device removal.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 7695483
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 13, 2010
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 7594900
    Abstract: Delivery systems for accessing the targeted tissue within the living being and introduction of at least one agent at select locations into the tissues of the heart such as the myocardium and other select tissues. Where appropriate, portions of the system are steerable to properly orient the device. When tissue penetration is utilized, the device may include a feature to control the depth of penetration. removal. The system may utilize some form of mechanical action or application of energy (e.g. electrical, sonic, thermal, optical, pressurized fluid, radio frequency (RF), nuclear) in the process. The agent delivered to the tissue may include one or more of pharmaceuticals, biologically active agents, radiopaque materials, etc.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: September 29, 2009
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 7419482
    Abstract: A method of vascularizing cardiac tissue using an instrument through the vascular system to an entry situs located at or adjacent the cardiac tissue is provided including providing a flowable agent comprising microspheres or microparticles having a particulate size range of 1 micron to 1 mm, introducing the agent through the instrument, imparting a particle moving force through the instrument that is generated externally to cause the microspheres or microparticles to pass directly through contiguous tissue to target cardiac tissue, the particle-moving force imparting a high pressure on the agent of several thousand psi, the microspheres or microparticles passing through the contiguous tissue without any mechanical means, whereupon the microspheres or microparticles directly enter the target cardiac tissue, forming channels in the wall of the myocardium at spaced locations and in communication with the interior of the heart, and introducing the flowable agent in the channels.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: September 2, 2008
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20080097402
    Abstract: A device for accessing a vessel, duct or lumen, comprising a guidewire having a proximal end and a distal end, and at least one projection that extends from said guidewire at or near the distal end of the guidewire. When the guidewire is placed into the vessel, duct or lumen containing a flowing fluid, the drag on the guidewire is greater when the fluid is flowing from the proximal to distal end of the guidewire than it is when it is flowing distally-to-proximally, thereby helping to direct the guidewire. The device is particularly useful in crossing a narrowing in the vessel, duct or lumen, such as may occur in blood vessels containing a stenosis, such as due to atherosclerosis.
    Type: Application
    Filed: August 18, 2006
    Publication date: April 24, 2008
    Inventors: David M. Hoganson, Ravi K. Veeraswamy
  • Patent number: 7264624
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: September 4, 2007
    Assignee: Kensey Nash Corporation
    Inventors: John E Nash, Douglas G Evans, David M Hoganson
  • Patent number: 6923820
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: August 2, 2005
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 6830577
    Abstract: A system and method for treating diseased target tissue of a living being. The system comprises a working head, e.g., a rotary impacting impeller, a stent delivery catheter, a flush catheter, or liquid jets, a debris extraction sub-system, and may have barrier means in certain embodiments. The working head is arranged to treat diseased tissue, e.g., at least partially occluded with atherosclerotic plaque, or surrounding tissue being compromised by a disease such as cancer, in vessels or lumens, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, to create a differential flow adjacent the working head. The introduction of the infusate liquid may also be used to deliver drugs and other therapies systemically or locally, between the working head and the distal protection barrier.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: December 14, 2004
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20040210239
    Abstract: A system and method for treating diseased target tissue of a living being. The system comprises a working head, e.g., a rotary impacting impeller, a stent delivery catheter, a flush catheter, or liquid jets, a debris extraction sub-system, and may have barrier means in certain embodiments. The working head is arranged to treat diseased tissue, e.g., at least partially occluded with atherosclerotic plaque, or surrounding tissue being compromised by a disease such as cancer, in vessels or lumens, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid adjacent the working head and withdraws that liquid and debris adjacent the working head. The introduction of the infusate liquid may also be used to deliver drugs and other therapies systemically or locally, between the working head and the distal protection barrier.
    Type: Application
    Filed: May 18, 2004
    Publication date: October 21, 2004
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20040158227
    Abstract: The systems basically comprise a delivery system for accessing the targeted tissue within the living being and introduction of at least one agent at select locations in the into the myocardium and other select tissues. The delivery systems are arranged to access the tissues of the heart. One or more of the systems can be utilized during transluminal, transthoracic and direct surgical access procedures. Where appropriate, for example in the case of intraventricular access, portions of the system are steerable to properly orient the device. The instruments may pierce the heart tissue and create channels extending from the endocardium, the epicardium, or the cardiac vessels. When tissue penetration is utilized, the device may include a feature to control the depth of penetration. To minimize bleeding through the channels the device can dilate small initial punctures that later contract down after device removal.
    Type: Application
    Filed: January 23, 2004
    Publication date: August 12, 2004
    Applicant: Kensey Nash Corporation, Marsh Creek Corporate Center
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 6709427
    Abstract: The systems basically comprise a delivery system for accessing the targeted tissue within the living being and introduction of at least one agent at select locations in the into the myocardium and other select tissues. The delivery systems are arranged to access the tissues of the heart. One or more of the systems can be utilized during transluminal, transthoracic and direct surgical access procedures. Where appropriate, for example in the case of intraventricular access, portions of the system are steerable to properly orient the device. The instruments may pierce the heart tissue and create channels extending from the endocardium, the epicardium, or the cardiac vessels. When tissue penetration is utilized, the device may include a feature to control the depth of penetration. To minimize bleeding through the channels the device can dilate small initial punctures that later contract down after device removal.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: March 23, 2004
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20030191449
    Abstract: A system for accessing targeted tissue within the living being and introduction of particles at select locations into the myocardium and other select tissues. The system includes an instrument and a plurality of flowable particles to be delivered by the instrument via an externally applied force. The particles to the tissue may include one or more of pharmaceuticals, biologically active agents, radiopaque materials, etc.
    Type: Application
    Filed: April 2, 2003
    Publication date: October 9, 2003
    Applicant: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20030074049
    Abstract: A covered stent for use in a vessel, duct, lumen or hollow organ of a living being. The covered stent includes a stent or framework of interconnected elongated members in the form of a hollow tube having an inner surface and an outer surface. The stent may be a coiled stent, slotted tube stent, self-expanding stent, or any other intravascular stent design and may be metal or a polymer or a combination. A cover is disposed over a portion of the stent, either on the inside surface, the outside surface or intermediate those surfaces. The cover may be a polymer and may be resorbable. The cover can be attached to the stent by wrapping a sheet of polymer material around the stent, or forming a tube of polymer material and mounting it over the stent. The cover can extend over the entire stent or only a portion of the stent and may include one or more drugs or other beneficial active agents for delivery into the body of the being.
    Type: Application
    Filed: November 5, 2002
    Publication date: April 17, 2003
    Applicant: Kensey Nash Corporation
    Inventors: David M. Hoganson, John E. Nash
  • Publication number: 20020198550
    Abstract: A system and method for treating diseased target tissue of a living being. The system comprises a working head, e.g., a rotary impacting impeller, a stent delivery catheter, a flush catheter, or liquid jets, a debris extraction sub-system, and may have barrier means in certain embodiments. The working head is arranged to treat diseased tissue, e.g., at least partially occluded with atherosclerotic plaque, or surrounding tissue being compromised by a disease such as cancer, in vessels or lumens, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, to create a differential flow adjacent the working head. The introduction of the infusate liquid may also be used to deliver drugs and other therapies systemically or locally, between the working head and the distal protection barrier.
    Type: Application
    Filed: January 28, 2002
    Publication date: December 26, 2002
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 6350280
    Abstract: A system and method of use for effecting the bypass or other anastomosis of a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which the connector assembly is deployed by the deployment instrument. The connector assembly is at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the anastomosis procedure, with or without the use of sutures.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: February 26, 2002
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 6063114
    Abstract: A system and method of use for effecting the bypass or other anastomosis of a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which the connector assembly is deployed by the deployment instrument. The connector assembly is at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the anastomosis procedure, with or without the use of sutures.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: May 16, 2000
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson