Patents by Inventor David M. Kindlon

David M. Kindlon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200283935
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 10756020
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 25, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Patent number: 10732728
    Abstract: A keyboard may be provided that has keys overlapped by a touch sensor. The keyboard may have key sensor circuitry for monitoring switching in the keys for key press input. The keyboard may also have touch sensor circuitry such as capacitive touch sensor circuitry that monitors capacitive electrodes in the touch sensor for touch sensor input such as multitouch gesture input. The touch sensor may be formed from a layer of fabric. The fabric may be woven fabric or other fabric in which conductive strands of material serve as the electrodes for the touch sensor.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 4, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Daniel A. Podhajny, David M. Kindlon
  • Patent number: 10701802
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20200087823
    Abstract: A fabric-based item may include fabric formed from intertwined strands of material. The fabric may include first and second fabric layers that at least partially surround a pocket. Initially, the pocket may be completely enclosed by the first and second layers of fabric. A shim may be placed in the pocket before the pocket is closed. An opening may be formed in the first layer of fabric to expose a conductive strand in the pocket. The shim may prevent the cutting tool from cutting all the way through to the second layer of fabric. After cutting the hole in the first layer of fabric, the shim may be removed and an electrical component may be soldered to the conductive strand in the pocket. A polymer material may be injected into the pocket to encapsulate the electrical component. The polymer material may interlock with the surrounding pocket walls.
    Type: Application
    Filed: May 17, 2019
    Publication date: March 19, 2020
    Inventors: Peter F. Coxeter, Didio V. Gomes, Benjamin J. Grena, Steven J. Keating, David M. Kindlon, Maurice P. May, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine
  • Publication number: 20200084886
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10553540
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 4, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Publication number: 20200020639
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Patent number: 10485103
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20190298265
    Abstract: A fabric-based item may be provide with a stretchable band. The stretchable band may be formed from a ring-shaped strip of stretchable fabric having an opening configured to fit around a body part of a user. Circuitry may be coupled to strands of material in the stretchable band. The circuitry may include sensor circuitry for making measurements on the body part such as electrocardiogram measurements, blood pressure measurements, and respiration rate measurements. Wireless communications circuitry in the fabric-based item may be used to communicate wirelessly with external electronic equipment. A wireless power transmitting device may transmit wireless power. A coil formed from conductive strands in the fabric-based item may be used by wireless power receiving circuitry in the fabric-based item to receive the wireless power. The coil may have one or more turns that run around the ring-shaped strip of stretchable fabric.
    Type: Application
    Filed: September 24, 2018
    Publication date: October 3, 2019
    Inventors: Steven J. Keating, Daniel D. Sunshine, Benjamin J. Grena, Daniel A. Podhajny, Jerzy S. Guterman, Jessica J. Lu, David M. Kindlon
  • Patent number: 10199323
    Abstract: An item may have a flexible support structure and may include a flexible component. The flexible component may have electrical components mounted on component mounting regions in a flexible circuit substrate. The component mounting regions may be interconnected by serpentine interconnect paths or other flexible interconnect paths. The flexible circuit substrate and component mounting regions may extend along a longitudinal axis of the flexible component or may form a two-dimensional array. Two-dimensional mesh-shaped flexible circuit substrates may be used in forming displays. The mesh-shaped flexible circuit substrates may be auxetic substrates that widen when stretched (e.g., structures with a negative Poisson's ratio that become thicker perpendicular to applied force when stretched) and that therefore reduce image distortion. Temporary tethers may help hold flexible circuit substrates together until intentionally broken following assembly of a flexible component into the flexible support structure.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Yung-Yu Hsu, Hoon Sik Kim, Christopher A. Schultz, David M. Kindlon, Daniel D. Sunshine, Paul S. Drzaic, Sinan Alousi, Terry C. Shyu
  • Publication number: 20190013275
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Application
    Filed: August 20, 2015
    Publication date: January 10, 2019
    Applicant: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Publication number: 20190013274
    Abstract: A fabric-based item may include fabric such as woven fabric having insulating and conductive yarns or other strands of material. The conductive yarns may form signal paths. Electrical components can be embedded within pockets in the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The electrical device may be a light-emitting diode, a sensor, an actuator, or other electrical device. The electrical device may have contacts that are soldered to contacts on the interposer. The interposer may have additional contacts that are soldered to the signal paths. The fabric may have portions that form transparent windows overlapping the electrical components or that have other desired attributes.
    Type: Application
    Filed: August 20, 2015
    Publication date: January 10, 2019
    Applicant: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Publication number: 20180061743
    Abstract: An item may have a flexible support structure and may include a flexible component. The flexible component may have electrical components mounted on component mounting regions in a flexible circuit substrate. The component mounting regions may be interconnected by serpentine interconnect paths or other flexible interconnect paths. The flexible circuit substrate and component mounting regions may extend along a longitudinal axis of the flexible component or may form a two-dimensional array. Two-dimensional mesh-shaped flexible circuit substrates may be used in forming displays. The mesh-shaped flexible circuit substrates may be auxetic substrates that widen when stretched (e.g., structures with a negative Poisson's ratio that become thicker perpendicular to applied force when stretched) and that therefore reduce image distortion. Temporary tethers may help hold flexible circuit substrates together until intentionally broken following assembly of a flexible component into the flexible support structure.
    Type: Application
    Filed: January 25, 2017
    Publication date: March 1, 2018
    Inventors: Yung-Yu Hsu, Hoon Sik Kim, Christopher A. Schultz, David M. Kindlon, Daniel D. Sunshine, Paul S. Drzaic, Sinan Alousi, Terry C. Shyu