Patents by Inventor David Nalewajek

David Nalewajek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150065746
    Abstract: To address the problem of insufficient biodegradability of perfluorinated surfactants, the present invention provides biodegradable fluorosurfactants derived from olefins having —CHR, —CHRf, —CHF, and/or —CH2 groups, where R is an alkyl group and Rf is a perfluoro or fluroroalkyl group. Preferably, the —CHR, —CHRf, —CHF, and/or —CH2 groups are contained within partially fluorinated alkenes.
    Type: Application
    Filed: August 14, 2014
    Publication date: March 5, 2015
    Inventors: Haridasan K. Nair, Yian Zhai, Andrew J. Poss, Rajiv R. Singh, David Nalewajek
  • Patent number: 8968877
    Abstract: Provided herein is a reflective optical construction containing a fluoropolymer barrier layer, wherein the fluoropolymer is selected from the group consisting of homopolymers and copolymers of at least one tetrafluoropropene or pentafluoropropene, preferably 2,3,3,3-tetrafluoropropene. Also disclosed is a method of forming a reflective optical construction including (a) applying a barrier layer comprising one or more fluoropolymers selected from the group consisting of homopolymers and copolymers of at least one tetrafluoropropene or pentafluoropropene, and (b) curing.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: March 3, 2015
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, David Nalewajek, Desaraju Varaprasad, Awdhoot Vasant Kerkar
  • Publication number: 20150045590
    Abstract: The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides several routes for forming HCFO-1233zd from 3,3,3-trifluoropropene (FC-1234zf).
    Type: Application
    Filed: July 14, 2014
    Publication date: February 12, 2015
    Inventors: Haridasan K. Nair, David Nalewajek, Andrew Joseph Poss, Yian Zhai
  • Publication number: 20150045588
    Abstract: The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides routes for HCFO-1233zd from inexpensive and commercially available trifluoromethane (HFC-23).
    Type: Application
    Filed: July 14, 2014
    Publication date: February 12, 2015
    Inventors: Haridasan K. Nair, Andrew Joseph Poss, David Nalewajek, Yian Zhai
  • Publication number: 20140366540
    Abstract: Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Inventors: Gary Zyhowski, Ryan J. Hulse, Haridasan K. Nair, David Nalewajek, Rajiv R. Singh
  • Patent number: 8901360
    Abstract: Disclosed is a process for preparing cis-1,1,1,4,4,4-hexafluorobutene comprising the steps of (a) reacting CCl4 with a compound having the formula CF3CX?CXH, where each X is independently halogen or hydrogen, to form a compound having the formula CF3CXClCXHCCl3; (b) fluorinating the compound formed in step (a) to form a compound having the formula CF3CXHCXHCF3; (c) converting the compound formed in step (b) by a reaction selected from the group consisting of dehydrohalogenation, dehalogenation and both reactions, to form a compound having the formula CF3C?CCF3; and (d) catalytically reducing the compound formed in step (c) with hydrogen to form the compound having the formula:
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 2, 2014
    Assignee: Honeywell International Inc.
    Inventors: Andrew Joseph Poss, David Nalewajek, Haridasan K. Nair, Michael Van Der Puy
  • Patent number: 8889924
    Abstract: The present invention provides a simple three step process for the production of 1,3,3,3-tetrafluoropropene (HFO-1234ze). In the first step, carbon tetrachloride is added to vinyl fluoride to afford the compound CCl3CH2CHClF (HCFC-241fb). HCFC-241fb is then fluorinated with anhydrous HF to afford CF3CH2CHClF (HCFC-244fa) in the second step. Dehydrochlorination of HCFC-244fa, in the third step, affords the desired product, CF3CH?CHF (HFO-1234ze). Following similar chemistry, vinyl chloride may be used in place of vinyl fluoride.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, Andrew Joseph Poss, David Nalewajek
  • Patent number: 8829254
    Abstract: The present invention describes a process for making CF3CH?CHF (HFO-1234ze). The process involves the addition of carbon tetrachloride (CCl4) to 1,2-dichloroethylene to form CCl3CHClCHCl2. The compound CCl3CHClCHCl2 thus can then either be treated with HF to produce CF3CHClCHClF as the main product, or it can be converted to CCl2?CHCHCl2 (1230za) by dechlorination. CCl2?CHCHCl2 can be treated with HF such that the main product obtained is CF3CHClCHClF. CF3CH?CHCl may be produced as a by-product, but upon treatment with HF, it affords the compound CF3CHClCHClF. The desired compound, CF3CH?CHF (HFO-1234ze), is obtained as a trans/cis mixture by dehydrochlorination of CF3CH2CHClF or by dechlorination of CF3CHClCHClF.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, David Nalewajek, Andrew Joseph Poss
  • Patent number: 8820079
    Abstract: Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 2, 2014
    Assignee: Honeywell International Inc.
    Inventors: Gary Zyhowski, Ryan J. Hulse, Haridasan K. Nair, David Nalewajek, Rajiv R. Singh
  • Patent number: 8791309
    Abstract: In accordance with the present invention, processes of synthesizing 3,3,3-trifluoropropyne from 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, and/or 1,1,1,3,3-pentafluoropropane are provided.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: July 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: Yian Zhai, Andrew J. Poss, Rajiv R. Singh, David Nalewajek
  • Publication number: 20140179887
    Abstract: In accordance with the present invention, aqueous emulsion polymerization processes of synthesizing 2,3,3,3-tetrafluoropropene/vinylidene fluoride copolymers having 2,3,3,3-tetrafluoropropene as the major monomer unit are provided.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 26, 2014
    Applicant: Honeywell International Inc.
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl Cantlon
  • Publication number: 20140179961
    Abstract: In accordance with the present invention, processes of synthesizing 3,3,3-trifluoropropyne from 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, and/or 1,1,1,3,3-pentafluoropropane are provided.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 26, 2014
    Applicant: Honeywell International Inc.
    Inventors: Yian Zhai, Andrew J. Poss, Rajiv R. Singh, David Nalewajek
  • Publication number: 20140150648
    Abstract: A fluorinated ethylene-propylene polymeric membrane comprising a copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride is disclosed. The fluorinated ethylene-propylene polymeric membranes of the invention are especially useful in gas separation processes in air purification, petrochemical, refinery, and natural gas industries.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl L. Cantlon
  • Publication number: 20140147480
    Abstract: A copolymer comprising trans-1,3,3,3-tetrafluoropropene units and vinylidene fluoride units, and methods of making the same. A method of preventing biofouling on an article of manufacture, comprising applying such copolymer to the article of manufacture. A process of preparing a surface having a surface energy of between about 20 and about 30 mJ/m2, comprising applying such a copolymer to a support. A method of preventing accumulation of ice on an article of manufacture, comprising applying such a copolymer to an article of manufacture. A method of preparing a polymer, comprising a step of adding trans-1,3,3,3-tetrafluoropropene/vinylidene fluoride copolymer as a polymer processing additive/aid to said polymer.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 29, 2014
    Applicant: Honeywell International Inc.
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl Cantlon
  • Publication number: 20140140905
    Abstract: A method for treating process distillate heavies produced during uranium fluoride purification is described. The heavies contain primarily uranium hexafluoride, UF6, and molybdenum oxytetrafluoride, MoOF4. The uranium hexafluoride is removed via distillation at reduced pressure leaving essentially MoOF4 containing <0.1% of residual uranium hexafluoride. This mixture is hydrolyzed in water, then treated with a solution of sodium hydroxide until a pH of at least 7.5 is reached. The precipitated sodium diuranate and sodium fluoride are removed by filtration. The filtrate is reacted with calcium chloride to precipitate the molybdenum values as calcium molybdate containing trace quantities of calcium fluoride.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 22, 2014
    Applicant: Honeywell International Inc.
    Inventors: David Nalewajek, Kent Beckman
  • Publication number: 20140142264
    Abstract: A copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride and having a surface energy of between about 20 and about 30 mJ/m2. A process of preparing a surface having a surface energy of between about 20 and about 30 mJ/m2, comprising a step of applying said copolymer to a support. A method of preventing biofouling on an article of manufacture comprising applying said copolymer to the article of manufacture. An article of manufacture that is at least partly covered with said copolymer.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: Honeywell International Inc.
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl Cantlon
  • Publication number: 20140138314
    Abstract: A fluorinated ethylene-propylene polymeric membrane comprising a copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride is disclosed. The fluorinated ethylene-propylene polymeric membranes of the invention are especially useful in gas separation processes in air purification, petrochemical, refinery, and natural gas industries.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl L. Cantlon
  • Publication number: 20140051818
    Abstract: A process of synthesizing poly(2,3,3,3-tetrafluoropropene), comprising reacting 2,3,3,3-tetrafluoropropene monomers in a reaction medium in the presence of an initiator, wherein the initiator is added to the reaction medium in multiple portions at different times during the process.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 20, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl Cantlon
  • Patent number: 8652244
    Abstract: Developing compositions are provided herein for use in producing a visibly detectable image of a latent physiological biometric. The developing compositions include a carrier solvent that includes at least one C3-C4 hydrofluorocarbon olefin or at least one hydrochlorofluorocarbon olefin.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: February 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: David Nalewajek, Andrew Joseph Poss, Rajiv Ratna Singh, Cheryl Cantlon
  • Publication number: 20140044764
    Abstract: A copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride and having a surface energy of between about 20 and about 30 mJ/m2. A process of preparing a surface having a surface energy of between about 20 and about 30 mJ/m2, comprising a step of applying said copolymer to a support. A method of preventing biofouling on an article of manufacture comprising applying said copolymer to the article of manufacture. An article of manufacture that is at least partly covered with said copolymer.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 13, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl Cantlon