Patents by Inventor Derek Raybould

Derek Raybould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100077825
    Abstract: Dispersion strengthened aluminum base alloys are shaped into metal parts by high strain rate forging compacts or extruded billets composed thereof. The number of process steps required to produce the forged part are decreased and strength and toughness of the parts are increased. The dispersion strengthened alloy may have the formula Albal,Fea,SibXc, wherein X is at least one element selected from Mn, V, Cr, Mo, W, Nb, and Ta, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “c” ranges from 0.05 to 3.5 weight-%, and the balance is aluminum plus incidental impurities. Alternatively, the dispersion strengthened alloy may be described by the formula Albal,Fea,SibVdXc, wherein X is at least one element selected from Mn, Mo, W, Cr, Ta, Zr, Ce, Er, Sc, Nd, Yb, and Y, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “d” ranges from 0.05 to 3.5 weight-%, “c” ranges from 0.02 to 1.50 weight-%, and the balance is aluminum plus incidental impurities.
    Type: Application
    Filed: September 8, 2006
    Publication date: April 1, 2010
    Inventors: Paul Chipko, Derek Raybould
  • Publication number: 20100068507
    Abstract: An article having a thermal barrier coating includes a superalloy substrate having a columnar grained ceramic coat formed thereon. The ceramic coat includes a nanolaminate region comprising repeating layers of ceramic material with each layer being less than 500 nm in thickness, with dispersions of metal oxide doping material situated between each of the layers. The ceramic coat further includes a non-doped region having a thickness greater than 500 nm adjacent to the nanolaminate region, the non-doped region including one layer or a plurality of adjacent layers of ceramic material without dispersions of metal oxide doping material situated between each of the layers. In one embodiment, and by way of example only, a bond coat is formed between the substrate and the columnar grained ceramic coat. According to another embodiment, the superalloy substrate forms an adherent alumina scale, and no bond coat is necessary.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 18, 2010
    Inventors: Thomas E. Strangman, Derek Raybould
  • Patent number: 7638178
    Abstract: A protective coating for a component comprising a ceramic based substrate, and methods for protecting the component, the protective coating adapted for withstanding repeated thermal cycling. The substrate may comprise silicon nitride or silicon carbide, and the protective coating may comprise at least one tantalate of scandium, yttrium, or a rare earth element. The protective coating may further comprise one or more metal oxides. The coating protects the substrate from combustion gases in the high temperature turbine engine environment. The coating may be multi-layered and exhibits strong bonding to Si-based substrate materials and composites.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 29, 2009
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Chien-Wei Li, Bjoern Schenk, Thomas E. Strangman
  • Publication number: 20090297866
    Abstract: Components and methods of forming a protective coating system on the components are provided. In an embodiment, and by way of example only, the component includes a ceramic substrate and a braze layer disposed over the ceramic substrate. The braze layer includes a silicon matrix having a first constituent and a second constituent that is different than the first constituent. The first constituent forms a first intermetallic with a portion of the silicon matrix and the second constituent forms a second intermetallic with another portion of the silicon matrix, wherein the braze layer is formulated to provide a barrier to oxygen diffusion therethrough.
    Type: Application
    Filed: July 30, 2007
    Publication date: December 3, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Derek Raybould, Paul Chipko, Christian DelaCruz, Thomas E. Strangman, Laura J. Lindberg
  • Patent number: 7604726
    Abstract: Platinum containing coatings for corrosion and oxidation protection of a substrate, and platinum electrodeposition methods for coating a substrate. The coating may comprise platinum and at least one supplementary constituent, and the method may involve co-electrodeposition of platinum and the supplementary constituent from a single electrolyte composition. The supplementary constituent may comprise chromium, an oxidation protective reactive element, or an alloy of chromium with a reactive element. Components protected by such coatings are also disclosed.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: October 20, 2009
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Kozlov, Svetlana Kozlova, legal representative, Derek Raybould, Siu-Ching D. Lui, Thomas E. Strangman
  • Patent number: 7559454
    Abstract: A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1-20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800-975° C. and over 3 to 15 minutes.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 14, 2009
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Paul Chipko, Matthew Pohlman
  • Patent number: 7556695
    Abstract: Methods and apparatus to make multilayer thermal barrier coatings for superalloy substrates such as turbine blades or vanes are disclosed. The methods produce non-homogeneous, nanometer-size, successive layers and a non-homogeneous interfacial layer without the use of baffles. Methods are also disclosed to use a lower cost metallic source and an oxygen bleed to create alumina or tantalum oxide vapor, to use a tantalum oxide or an alumina ingot and a low pressure inert gas feed to direct the vapor clouds, to use pulsed evaporation from a secondary vapor source to create non-homogeneous multilayer coating on non-rotated substrates, to use an electric bias to direct the vapor clouds, and to use a mechanical system to direct the vapor clouds or move and position the article to be coated in the clouds.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: July 7, 2009
    Assignee: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Derek Raybould
  • Publication number: 20090148628
    Abstract: Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary method of fabricating a protective coating system on a substrate comprises forming a bond coating on the substrate, forming a silicate layer on the bond coating, forming a thermal barrier coating overlying the silicate layer, and heating the thermal barrier coating.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Derek Raybould, Paul J. Mravcak, Christian Delacruz
  • Patent number: 7510370
    Abstract: A turbine blade tip and shroud clearance control coating system comprising an abrasive blade tip coating and an abradable shroud coating are provided. The abrasive layer may comprise abrasive particles of cubic zirconia, cubic hafnia or mixtures thereof, and the abradable layer may be a nanolaminate thermal barrier coating that is softer than the abrasive layer. The invention further provides an alternate coating system comprising an abradable blade tip coating and an abrasive shroud coating.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 31, 2009
    Assignee: Honeywell International Inc.
    Inventors: Thomas E. Strangman, Derek Raybould, Paul Chipko, Malak F. Malak
  • Publication number: 20090038935
    Abstract: A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
    Type: Application
    Filed: April 14, 2008
    Publication date: February 12, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Margaret M. Floyd, Thomas Strangman, Derek Raybould, Paul J. Mravcak
  • Patent number: 7479299
    Abstract: The present invention thus provides an improved method for coating turbine engine components. The method utilizes a cold high velocity gas spray technique to coat turbine blades, compressor blades, impellers, blisks, and other turbine engine components. These methods can be used to coat a variety of surfaces thereon, thus improving the overall durability, reliability and performance of the turbine engine itself. The method includes the deposition of powders of alloys of nickel and aluminum wherein the powders are formed so as to have an amorphous microstructure. Layers of the alloys may be deposited and built up by cold high velocity gas spraying. The coated items displayed improved characteristics such as hardness, strength, and corrosion resistance.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: January 20, 2009
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Murali N. Madhava
  • Patent number: 7473072
    Abstract: A turbine blade tip and shroud clearance control coating system comprising a dense abrasive blade tip layer and an abradable shroud layer are provided. The dense abrasive coating may comprise cubic zirconia, hafnia or mixtures thereof and the abradable layer may be a nanolaminate thermal barrier coating that is softer than the dense abrasive layer.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: Malak F. Malak, Derek Raybould, Thomas E. Strangman
  • Patent number: 7465423
    Abstract: A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1-20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800-975° C. and over 3 to 15 minutes.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: December 16, 2008
    Assignee: Honeywell International, Inc.
    Inventors: Derek Raybould, Paul Chipko, Matthew Pohlman
  • Patent number: 7455881
    Abstract: The present invention provides methods and materials for use in applying a coating on a surface of a magnesium component. The method includes the steps of: accelerating a coating powder to a velocity of between about 500 to about 1200 meters/second, wherein the coating powder comprises a material selected from the group consisting of aluminum, aluminum alloys, titanium, titanium alloys, and composites; directing the coating powder through a convergent-divergent nozzle onto the surface of the magnesium component; and forming a coating on the surface of the magnesium component so as to substantially cover the surface of the magnesium component. The coating thickness may be between approximately 0.1 to approximately 1.0 mm.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: November 25, 2008
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Murali N. Madhava, Vincent Chung, Timothy R. Duffy, Margaret Floyd
  • Patent number: 7419086
    Abstract: A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1–20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800–975° C. and over 3 to 15 minutes.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: September 2, 2008
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Paul Chipko, Matthew Pohlman
  • Patent number: 7416788
    Abstract: A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: August 26, 2008
    Assignee: Honeywell International Inc.
    Inventors: Margaret M. Floyd, Thomas E. Strangman, Derek Raybould, Paul J. Mravcak
  • Publication number: 20080193657
    Abstract: Exemplary embodiments of the invention provide barrier coated substrates and methods of coating a substrate with a barrier coating derived from sol gels. An example includes a barrier coated aerospace component that is subject to hot salt corrosion during use. The barrier coating is derived from oxidation of a coating composition that includes at least one sol gel. The barrier coating resists hot salt corrosion for an incubation period of such duration that an uncoated superalloy substrate under the same conditions would suffer corrosion to a depth of about 2.0 mils. Methods of applying the barrier coating include the steps of selecting a first liquid sol gel and wetting surfaces of the superalloy substrate with the selected first liquid sol gel. The wetted surfaces of the superalloy substrate are subjected to heat treatment. The heat treatment includes sintering of sol gel to oxide to produce a barrier coating.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Inventors: Derek Raybould, Thomas E. Strangman, Christian DelaCruz
  • Publication number: 20080193663
    Abstract: According to a method for forming a coating system on a turbine engine component substrate that comprises a nickel-based superalloy substrate having at least one refractory metal included therein, a nickel-based layer is formed on the substrate, the nickel-based layer comprising at least one active material selected from the group consisting of elemental silicon and a silicon compound. The at least one active material is then diffused into the substrate. An yttrium-modified platinum aluminide bond coating, or a MCrAlX bond coating, may be then formed over the active material-modified nickel-based layer.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventors: Thomas E. Strangman, Derek Raybould, Devlin M. Gualtieri
  • Publication number: 20080182026
    Abstract: A method for producing environment-protective coatings on a gas turbine engine component includes forming a substrate having an outer surface. The substrate includes a nickel-based superalloy that contains at least one reactive element. A first coating comprising aluminum is then formed on the substrate outer surface. The at least one reactive element is then diffused into the first coating to produce a reactive element-modified aluminide coating.
    Type: Application
    Filed: May 17, 2007
    Publication date: July 31, 2008
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yiping Hu, Derek Raybould
  • Publication number: 20080166225
    Abstract: A turbine blade tip and shroud clearance control coating system comprising an abrasive blade tip coating and an abradable shroud coating are provided. The abrasive layer may comprise abrasive particles of cubic zirconia, cubic hafnia or mixtures thereof, and the abradable layer may be a nanolaminate thermal barrier coating that is softer than the abrasive layer. The invention further provides an alternate coating system comprising an abradable blade tip coating and an abrasive shroud coating.
    Type: Application
    Filed: September 14, 2005
    Publication date: July 10, 2008
    Inventors: Thomas E. Strangman, Derek Raybould, Paul Chipko, Malak F. Malak