Patents by Inventor Didier Landru

Didier Landru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147864
    Abstract: A hybrid structure and a method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).
    Type: Application
    Filed: January 3, 2024
    Publication date: May 2, 2024
    Inventor: Didier Landru
  • Publication number: 20240112908
    Abstract: A method of manufacturing a composite structure comprises: a) providing a donor substrate of a single-crystal semiconductor material, b) implanting ions into the donor substrate, excluding an annular peripheral region, to form a buried brittle plane, the implantation conditions defining a first thermal budget for obtaining bubbling on a face of the donor substrate and a second thermal budget for obtaining a fracture in the brittle plane, c) forming a stiffening film on the donor substrate, carried out by applying a thermal budget lower than the first thermal budget, the stiffening film being perforated in the form of a mesh, the perforated stiffening film leaving a plurality of zones of the front face bare, d) depositing a carrier substrate on the donor substrate carried out by applying a thermal budget greater than the first thermal budget, and e) separating the donor substrate along the brittle plane.
    Type: Application
    Filed: March 14, 2022
    Publication date: April 4, 2024
    Inventors: Hugo Biard, Didier Landru
  • Patent number: 11930710
    Abstract: A hybrid structure and a method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: March 12, 2024
    Assignee: SOITEC
    Inventor: Didier Landru
  • Publication number: 20240030060
    Abstract: A method for preparing a thin layer comprises a weakening step for forming a weakened zone in a central portion of a donor substrate, the weakened zone not extending into a peripheral portion of the donor substrate; a step of joining the main face of the donor substrate to a receiver substrate to form an assembly to be split; and a step of separating the assembly to be split, the separating step comprising a heat treatment resulting in the freeing of the thin layer from the donor substrate at the central portion thereof only. The method also comprises, after the separating step, a detaching step comprising the treating of the assembly to be split in order to detach the peripheral portion of the donor substrate from the receiver substrate.
    Type: Application
    Filed: January 19, 2021
    Publication date: January 25, 2024
    Inventors: Frédéric Mazen, François Rieutord, Marianne Coig, Helen Grampeix, Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
  • Publication number: 20240030061
    Abstract: A donor substrate for transferring a single-crystal thin layer made of a first material, onto a receiver substrate. The donor substrate comprises: —a buried weakened plane delimiting an upper portion and a lower portion of the donor substrate, —in the upper portion, a first layer, a second layer adjacent to the buried weakened plane, and a stop layer between the first layer and the second layer the first layer composed of the first material, the stop layer being formed of a second material, —an amorphized sub-portion, made amorphous by ion implantation, having a thickness less than that of the upper portion, and including at least the first layer; the second layer comprising at least one single-crystal sub-layer, adjacent to the buried weakened plane. Two embodiments of a method may be used for transferring a single-crystal thin layer from the donor substrate.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 25, 2024
    Inventors: Larry Vincent, Shay Reboh, Lucie Le Van-Jodin, Frédéric Milesi, Ludovic Ecarnot, Gweltaz Gaudin, Didier Landru
  • Publication number: 20240030033
    Abstract: A method for producing a semiconductor structure comprises: a) providing a working layer of a semiconductor material; b) providing a carrier substrate of a semiconductor material; c) depositing a thin film of a semiconductor material different from that or those of the working layer and the carrier substrate on a free face to be joined of the working layer and/or the carrier substrate; d) directly joining the free faces of the working layer and the carrier substrate, e) annealing the joined structure at an elevated temperature to bring about segmentation of the encapsulated thin film and form a semiconductor structure comprising an interface region between the working layer and the carrier substrate, the interface region comprising: —regions of direct contact between the working layer and the carrier substrate; and —agglomerates comprising the semiconductor material of the thin film adjacent the regions of direct contact.
    Type: Application
    Filed: November 29, 2021
    Publication date: January 25, 2024
    Inventors: Gweltaz Gaudin, Ionut Radu, Franck Fournel, Julie Widiez, Didier Landru
  • Patent number: 11881429
    Abstract: A method for transferring a useful layer to a carrier substrate, includes the following steps: a) providing a donor substrate including a buried weakened plane; b) providing a carrier substrate; c) joining the donor substrate, by its front face, to the carrier substrate along a bonding interface so as to form a bonded structure; d) annealing the bonded structure in order to apply a weakening thermal budget thereto and to bring the buried weakened plane to a defined level of weakening; and e) initiating a splitting wave in the weakened plane by applying a stress to the bonded structure, the splitting wave self-propagating along the weakened plane to result in the useful layer being transferred to the carrier substrate. The splitting wave is initiated when the bonded structure is subjected to a temperature between 150° C. and 250° C.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 23, 2024
    Assignee: SOITEC
    Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
  • Publication number: 20240021461
    Abstract: The present disclosure relates to a method for mechanically separating layers, in particular in a double layer transfer process. The present disclosure relates more in particular to a method for mechanically separating layers, comprising the steps of providing a semiconductor compound comprising a layer of a handle substrate and an active layer with a front main side and a back main side opposite the front main side, wherein the layer of the handle substrate is attached to the front main side of the active layer, then providing a layer of a carrier substrate onto the back main side of the active layer, and then initiating mechanical separation of the layer of the handle substrate, wherein the layer of the handle substrate and the layer of the carrier substrate are provided with a substantially symmetrical mechanical structure.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Marcel Broekaart, Ionut Radu, Didier Landru
  • Patent number: 11876015
    Abstract: A method for transferring a useful layer to a carrier substrate comprises: joining a front face of a donor substrate to a carrier substrate along a bonding interface to form a bonded structure; annealing the bonded structure to apply a weakening thermal budget thereto and bring a buried weakened plane in the donor substrate to a defined level of weakening, the anneal reaching a maximum hold temperature; and initiating a self-sustained and propagating splitting wave in the buried weakened plane by applying a stress to the bonded structure to lead to the useful layer being transferred to the carrier substrate. The initiation of the splitting wave occurs when the bonded structure experiences a thermal gradient defining a hot region and a cool region of the bonded structure, the stress being applied locally in the cool region, and the hot region experiencing a temperature lower than the maximum hold temperature.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 16, 2024
    Assignee: Soitec
    Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed, Franck Colas
  • Publication number: 20230411205
    Abstract: A process for transferring blocks from a donor to a receiver substrate, comprises: arranging a mask facing a free surface of the donor substrate, the mask having one or more openings that expose the free surface of the donor substrate, the openings distributed according to a given pattern; forming, by ion implantation through the mask, an embrittlement plane in the donor substrate vertically in line with at least one region exposed through the mask, the embrittlement plane delimiting a respective surface region; forming a block that is raised relative to the free surface of the donor substrate localized vertically in line with each respective embrittlement plane, the block comprising the respective surface region; bonding the donor substrate to the receiver substrate via each block located at the bonding interface, after removing the mask; and detaching the donor substrate along the localized embrittlement planes to transfer blocks onto the receiver substrate.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 21, 2023
    Inventors: Didier Landru, Bruno Ghyselen
  • Publication number: 20230353115
    Abstract: A process for transferring a thin layer consisting of a first material to a support substrate consisting of a second material having a different thermal expansion coefficient, comprises providing a donor substrate composed of an assembly of a thick layer formed of the first material and of a handle substrate having a thermal expansion coefficient similar to that of the support substrate, and the donor substrate having a main face on the side of the thick laver; introducing light species into the thick layer to generate a plane of weakness therein and to define the thin layer between the plane of weakness and the main face of the donor substrate; assembling the main face of the donor substrate with a face of the support substrate; and detachment of the thin layer at the plane of weakness, the detachment comprising application of a heat treatment.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Isabelle Huyet, Cèdric Charles-Alfred, Didier Landru, Alexis Drouin
  • Patent number: 11776843
    Abstract: A process for transferring blocks from a donor to a receiver substrate, comprises: arranging a mask facing a free surface of the donor substrate, the mask having one or more openings that expose the free surface of the donor substrate, the openings distributed according to a given pattern; forming, by ion implantation through the mask, an embrittlement plane in the donor substrate vertically in line with at least one region exposed through the mask, the embrittlement plane delimiting a respective surface region; forming a block that is raised relative to the free surface of the donor substrate localized vertically in line with each respective embrittlement plane, the block comprising the respective surface region; bonding the donor substrate to the receiver substrate via each block located at the bonding interface, after removing the mask; and detaching the donor substrate along the localized embrittlement planes to transfer blocks onto the receiver substrate.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 3, 2023
    Assignee: Soitec
    Inventors: Didier Landru, Bruno Ghyselen
  • Patent number: 11742233
    Abstract: The present disclosure relates to a method for mechanically separating layers, in particular in a double layer transfer process. The present disclosure relates more in particular to a method for mechanically separating layers, comprising the steps of providing a semiconductor compound comprising a layer of a handle substrate and an active layer with a front main side and a back main side opposite the front main side, wherein the layer of the handle substrate is attached to the front main side of the active layer, then providing a layer of a carrier substrate onto the back main side of the active layer, and then initiating mechanical separation of the layer of the handle substrate, wherein the layer of the handle substrate and the layer of the carrier substrate are provided with a substantially symmetrical mechanical structure.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: August 29, 2023
    Assignee: Soitec
    Inventors: Marcel Broekaart, Ionut Radu, Didier Landru
  • Patent number: 11742817
    Abstract: A process for transferring a thin layer consisting of a first material to a support substrate consisting of a second material having a different thermal expansion coefficient, comprises providing a donor substrate composed of an assembly of a thick layer formed of the first material and of a handle substrate having a thermal expansion coefficient similar to that of the support substrate, and the donor substrate having a main face on the side of the thick layer introducing light species into the thick layer to generate a plane of weakness therein and to define the thin layer between the plane of weakness and the main face of the donor substrate; assembling the main face of the donor substrate with a face of the support substrate; and detachment of the thin layer at the plane of weakness, the detachment comprising application of a heat treatment.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 29, 2023
    Assignee: Soitec
    Inventors: Isabelle Huyet, Cedric Charles-Alfred, Didier Landru, Alexis Drouin
  • Publication number: 20230260841
    Abstract: A method of producing a composite structure comprising a thin layer of monocrystalline silicon carbide arranged on a carrier substrate of silicon carbide comprises: a) a step of provision of an initial substrate of monocrystalline silicon carbide, b) a step of epitaxial growth of a donor layer of monocrystalline silicon carbide on the initial substrate, to form a donor substrate, c) a step of ion implantation of light species into the donor layer, to form a buried brittle plane delimiting the thin layer, d) a step of formation of a carrier substrate of silicon carbide on the free surface of the donor layer, comprising a deposition at a temperature of between 400° C. and 1100° C., e) a step of separation along the buried brittle plane, to form the composite structure and the remainder of the donor substrate, and f) a step of chemical-mechanical treatment(s) of the composite structure.
    Type: Application
    Filed: October 26, 2020
    Publication date: August 17, 2023
    Inventors: Ionut Radu, Hugo Biard, Christophe Maleville, Eric Guiot, Didier Landru
  • Publication number: 20230230868
    Abstract: A temporary substrate, which is detachable at a detachment temperature higher than 1000° C. comprises: a semiconductor working layer extending along a main plane, a carrier substrate, an intermediate layer having a thickness less than 20 nm arranged between the working layer and the carrier substrate, a bonding interface located in or adjacent the intermediate layer, gaseous atomic species distributed according to a concentration profile along the axis normal to the main plane, the atoms remaining trapped in the intermediate layer and/or in an adjacent layer of the carrier substrate with a thickness less than or equal to 10 nm and/or in an adjacent sublayer of the working layer with a thickness less than or equal to 10 nm when the temporary substrate is subjected to a temperature lower than the detachment temperature.
    Type: Application
    Filed: April 26, 2021
    Publication date: July 20, 2023
    Inventors: Hugo Biard, Gweltaz Gaudin, Séverin Rouchier, Didier Landru
  • Patent number: 11670540
    Abstract: Substrates may include a useful layer affixed to a support substrate. A surface of the useful layer located on a side of the useful layer opposite the support substrate may include a first region and a second region. The first region may have a first surface roughness, may be located proximate to a geometric center of the surface, and may occupy a majority of an area of the surface. The second region may have a second, higher surface roughness, may be located proximate to a periphery of the surface, and may occupy a minority of the area of the surface.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: June 6, 2023
    Assignees: Soitec, Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Didier Landru, Nadia Ben Mohamed, Oleg Kononchuk, Frédéric Mazen, Damien Massy, Shay Reboh, François Rieutord
  • Publication number: 20230160102
    Abstract: A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline SiC, the donor substrate comprising a donor layer produced by epitaxial growth on an initial substrate, the donor layer exhibiting a density of crystal defects that is lower than that of the initial substrate; b) a step of ion implantation of light species into the donor layer, in order to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free face of the donor layer; c) a succession of n steps of formation of carrier layers, with n greater than or equal to 2, the n carrier layers being arranged on the donor layer successively on one another and forming the carrier substrate, each step of formation comprising a chemical vapor deposition, at a temperature of between 400° C. and 1100° C.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 25, 2023
    Inventors: Hugo Biard, Ionut Radu, Didier Landru
  • Publication number: 20220319910
    Abstract: A process for hydrophilic bonding first and second substrates, comprising: —bringing the first and second substrates into contact to form a bonding interface between main surfaces of the first and second substrates, and —applying a heat treatment to close the bonding interface. The process further comprises, before the step of bringing into contact, depositing, on the main surface of the first and/or second substrate, a bonding layer comprising a non-metallic material that is permeable to dihydrogen and that has, at the temperature of the heat treatment, a yield strength lower than that of at least one of the materials of the first substrate and of the second substrate located at the bonding interface. The layer has a thickness between 1 and 6 nm, and the heat treatment is carried out at a temperature lower than or equal to 900° C., and preferably lower than or equal to 600° C.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 6, 2022
    Inventors: Vincent Larrey, François Rieutord, Jean-Michel Hartmann, Frank Fournel, Didier Landru, Oleg Kononchuk, Ludovic Ecarnot
  • Publication number: 20220278269
    Abstract: A method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventor: Didier Landru