Patents by Inventor Didier Landru

Didier Landru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9589830
    Abstract: A method for transferring a useful layer onto a support includes the following processes: formation of a fragilization plane through the implantation of light species into a first substrate in such a way as to form a useful layer between this plane and a surface of the first substrate; application of the support onto the surface of the first substrate to form an assembly to be fractured having two exposed sides; thermal fragilization treatment of the assembly to be fractured; and initiation and self-sustained propagation of a fracture wave in the first substrate along the fragilization plane. At least one of the sides of the assembly to be fractured is in close contact, over a contact zone, with an absorbent element suitable for capturing and dissipating acoustic vibrations emitted during the initiation and/or propagation of the fracture wave.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 7, 2017
    Assignees: Soitec, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed, Damien Massy, Frederic Mazen, Francois Rieutord
  • Publication number: 20170062236
    Abstract: This disclosure relates to a method for dissolving a silicon dioxide layer in a structure, including, from the back surface thereof to the front surface thereof, a supporting substrate, the silicon dioxide layer and a semiconductor layer, the dissolution method being implemented in a furnace in which structures are supported on a support, the dissolution method resulting in the diffusion of oxygen atoms included in the silicon dioxide layer through the semiconductor layer and generating volatile products, and the furnace including traps suitable for reacting with the volatile products, so as to reduce the concentration gradient of the volatile products parallel to the front surface of at least one structure.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Didier Landru, Oleg Kononchuk
  • Publication number: 20160368259
    Abstract: A process for separating at least two substrates comprising at least two separation interfaces along one of the interfaces includes, before inserting a blade between the substrate, damaging at least one portion of a peripheral region of a chosen one of the interfaces, then inserting the blade and partially parting the substrates, and applying a fluid in a space between the parted substrates while the blade remains inserted therebetween, and decreasing a rupture energy of the chosen interface by stress corrosion involving breaking of siloxane bonds present at the interface.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Didier Landru, Christophe Figuet
  • Publication number: 20160372342
    Abstract: A process comprises the following steps: a) provision of a chamber suitable for receiving the plurality of structures, b) circulation of a gas stream in the chamber so that the chamber has a non-oxidizing atmosphere, c) heat treatment of the plurality of structures at a temperature above a threshold value above which the oxygen present in the oxide of the dielectric diffuses through the active layer reacts with the semiconductor material of the active layer and produces a volatile material, the process being noteworthy in that the step b) is carried out so that the gas stream has a rate of circulation between the plurality of structures greater than the rate of diffusion of the volatile material into the gas stream.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 22, 2016
    Inventors: Didier Landru, Oleg Kononchuk, Christophe Gourdel, Carole David, Sebastien Mougel, Xavier Schneider
  • Publication number: 20160358805
    Abstract: The present disclosure relates to a method for mechanically separating layers, in particular in a double layer transfer process. The present disclosure relates more in particular to a method for mechanically separating layers, comprising the steps of providing a semiconductor compound comprising a layer of a handle substrate and an active layer with a front main side and a back main side opposite the front main side, wherein the layer of the handle substrate is attached to the front main side of the active layer, then providing a layer of a carrier substrate onto the back main side of the active layer, and then initiating mechanical separation of the layer of the handle substrate, wherein the layer of the handle substrate and the layer of the carrier substrate are provided with a substantially symmetrical mechanical structure.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 8, 2016
    Inventors: Marcel Broekaart, Ionut Radu, Didier Landru
  • Patent number: 9514960
    Abstract: This disclosure relates to a method for dissolving a silicon dioxide layer in a structure, including, from the back surface thereof to the front surface thereof, a supporting substrate, the silicon dioxide layer and a semiconductor layer, the dissolution method being implemented in a furnace in which structures are supported on a support, the dissolution method resulting in the diffusion of oxygen atoms included in the silicon dioxide layer through the semiconductor layer and generating volatile products, and the furnace including traps suitable for reacting with the volatile products, so as to reduce the concentration gradient of the volatile products parallel to the front surface of at least one structure.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: December 6, 2016
    Assignee: Soited
    Inventors: Didier Landru, Oleg Kononchuk
  • Patent number: 9437473
    Abstract: A process for separating at least two substrates comprising at least two separation interfaces along one of the interfaces includes, before inserting a blade between the substrate, damaging at least one portion of a peripheral region of a chosen one of the interfaces, then inserting the blade and partially parting the substrates, and applying a fluid in a space between the parted substrates while the blade remains inserted therebetween, and decreasing a rupture energy of the chosen interface by stress corrosion involving breaking of siloxane bonds present at the interface.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 6, 2016
    Assignee: SOITEC
    Inventors: Didier Landru, Christophe Figuet
  • Publication number: 20160233125
    Abstract: A method for transferring a useful layer onto a carrier comprises formation of an embrittlement plane by implantation of light species into a first substrate in such a manner as to define the bounds of a useful layer between this plane and a surface of the first substrate, mounting of the carrier onto the surface of the first substrate so as to form an assembly to be fractured, and thermal fracture treatment of the first substrate along the embrittlement plane in such a manner as to transfer the useful layer onto the support. During the thermal fracture treatment, the degree of peripheral adhesion is reduced at the interface between the carrier and the first substrate.
    Type: Application
    Filed: February 8, 2016
    Publication date: August 11, 2016
    Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
  • Publication number: 20160152017
    Abstract: A method for assembling two substrates by molecular adhesion comprises: a first step (a) of putting first and second substrates in close contact in order to form an assembly having an assembly interface; a second step (b) of reinforcing the degree of adhesion of the assembly beyond a threshold adhesion value at which water is no longer able to diffuse along the assembly interface. The method also comprises a step (c) of anhydrous treatment of the first and second substrates in a treatment atmosphere having a dew point below ?10° C., and control of the dew point of a working atmosphere to which the first and second substrates are exposed from the anhydrous treatment step (c) until the end of the second step (b) so as to limit or prevent the appearance of bonding defects at the assembly interface.
    Type: Application
    Filed: November 20, 2015
    Publication date: June 2, 2016
    Inventors: Didier Landru, Capucine Delage, Franck Fournel, Elodie Beche
  • Publication number: 20160056052
    Abstract: This disclosure relates to a method for dissolving a silicon dioxide layer in a structure, including, from the back surface thereof to the front surface thereof, a supporting substrate, the silicon dioxide layer and a semiconductor layer, the dissolution method being implemented in a furnace in which structures are supported on a support, the dissolution method resulting in the diffusion of oxygen atoms included in the silicon dioxide layer through the semiconductor layer and generating volatile products, and the furnace including traps suitable for reacting with the volatile products, so as to reduce the concentration gradient of the volatile products parallel to the front surface of at least one structure.
    Type: Application
    Filed: March 3, 2014
    Publication date: February 25, 2016
    Inventors: Didier Landru, Oleg Kononchuk
  • Patent number: 9224704
    Abstract: The present invention relates to a process for realizing a connecting structure in a semiconductor substrate, and the semiconductor substrate realized accordingly. The semiconductor substrate has at least a first surface, and is foreseen for a 3D integration with a second substrate along the first surface, wherein the 3D integration is subject to a lateral misalignment in at least one dimension having a misalignment value.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: December 29, 2015
    Assignee: SOITEC
    Inventor: Didier Landru
  • Patent number: 9198294
    Abstract: The invention relates to an electronic device for radiofrequency or power applications, comprising a semiconductor layer supporting electronic components on a support substrate, wherein the support substrate comprises a base layer having a thermal conductivity of at least 30 W/mK and a superficial layer having a thickness of at least 5 ?m, the superficial layer having an electrical resistivity of at least 3000 Ohm·cm and a thermal conductivity of at least 30 W/mK. The invention also relates to two processes for manufacturing such a device.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: November 24, 2015
    Assignee: SOITEC
    Inventors: Didier Landru, Luciana Capello, Eric Desbonnet, Christophe Figuet, Oleg Kononchuk
  • Publication number: 20150303098
    Abstract: A method for transferring a useful layer onto a support includes the following processes: formation of a fragilization plane through the implantation of light species into a first substrate in such a way as to form a useful layer between this plane and a surface of the first substrate; application of the support onto the surface of the first substrate to form an assembly to be fractured having two exposed sides; thermal fragilization treatment of the assembly to be fractured; and initiation and self-sustained propagation of a fracture wave in the first substrate along the fragilization plane. At least one of the sides of the assembly to be fractured is in close contact, over a contact zone, with an absorbent element suitable for capturing and dissipating acoustic vibrations emitted during the initiation and/or propagation of the fracture wave.
    Type: Application
    Filed: April 14, 2015
    Publication date: October 22, 2015
    Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed, Damien Massy, Frederic Mazen, Francois Rieutord
  • Patent number: 9136113
    Abstract: A process for avoiding formation of an Si—SiO2—H2 environment during a dissolution treatment of a semiconductor-on-insulator structure that includes a carrier substrate, an oxide layer, a thin layer of a semiconductor material and a peripheral ring in which the oxide layer is exposed. This process includes encapsulating at least the exposed oxide layer of the peripheral ring with semiconductor material by performing a creep thermal treatment; and performing an oxide dissolution treatment to reduce part of the thickness of the oxide layer. In this process, the semiconductor material that encapsulates the oxide layer has a thickness before the oxide dissolution that is at least twice that of the oxide that is to be dissolved, thus avoiding formation of an Si—SiO2—H2 environment on the peripheral ring where the oxide layer would otherwise be exposed.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: September 15, 2015
    Assignee: SOITEC
    Inventors: Didier Landru, Fabrice Gritti, Eric Guiot, Oleg Kononchuk, Christelle Veytizou
  • Publication number: 20150231790
    Abstract: This disclosure relates to a device for separating two substrates to be utilized in electronics, optics, optoelectronics and/or photovoltaics. The device separates the substrates at an interface, the device comprising: a holder; a member for retaining the structure, the member being mounted on the holder; a tool for separating the two substrates, also mounted on the holder; and means for moving the separating tool and/or means for moving the retaining member relative to the holder so as to bring them closer together or move them farther apart from each other, preferably over a limited range of travel. This device is noteworthy in that the separating tool comprises a leading edge that has, in cross-section, in succession from its tip or its front edge to its back, a tapered portion that is extended by a flared portion.
    Type: Application
    Filed: September 3, 2013
    Publication date: August 20, 2015
    Inventor: Didier Landru
  • Publication number: 20150221544
    Abstract: A process for separating at least two substrates comprising at least two separation interfaces along one of the interfaces includes, before inserting a blade between the substrate, damaging at least one portion of a peripheral region of a chosen one of the interfaces, then inserting the blade and partially parting the substrates, and applying a fluid in a space between the parted substrates while the blade remains inserted therebetween, and decreasing a rupture energy of the chosen interface by stress corrosion involving breaking of siloxane bonds present at the interface.
    Type: Application
    Filed: September 4, 2013
    Publication date: August 6, 2015
    Inventors: Didier Landru, Christophe Figuet
  • Publication number: 20150214098
    Abstract: A process for fabrication of a structure includes assembling at least two substrates. At least one of these two substrates is intended to be used in electronics, optics, optoelectronics and/or photovoltaics. The structure includes at least two separation interfaces extending parallel to the main faces of the structure. The assembling process is carried out with a view to a separation of the structure along one interface selected from the interfaces, the separation being carried out by inserting a blade between the substrates and applying a parting force, via the blade. The interface chosen for the separation is formed so that it is more sensitive than the other interface(s) to stress corrosion. Separation occurs due to the combined action of said parting force and of a fluid capable of breaking siloxane (Si—O—Si) bonds present at the interface. A structure obtained by such a process may be separated along the chosen interface.
    Type: Application
    Filed: September 3, 2013
    Publication date: July 30, 2015
    Inventor: Didier Landru
  • Patent number: 8951887
    Abstract: The invention relates to a process for fabricating a semiconductor that comprises providing a handle substrate comprising a seed substrate and a weakened sacrificial layer covering the seed substrate; joining the handle substrate with a carrier substrate; optionally treating the carrier substrate; detaching the handle substrate at the sacrificial layer to form the semiconductor structure; and removing any residue of the sacrificial layer present on the seed substrate.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: February 10, 2015
    Assignee: Soitec
    Inventors: Fabrice Letertre, Didier Landru
  • Publication number: 20140357093
    Abstract: The invention relates to a process for stabilizing a bonding interface, located within a structure for applications in the fields of electronics, optics and/or optoelectronics and that comprises an oxide layer buried between an active layer and a receiver substrate, the bonding interface having been obtained by molecular adhesion. In accordance with the invention, the process further comprises irradiating this structure with a light energy flux provided by a laser, so that the flux, directed toward the structure, is absorbed by the energy conversion layer and converted to heat in this layer, and in that this heat diffuses into the structure toward the bonding interface, so as to thus stabilize the bonding interface.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 4, 2014
    Inventors: Didier Landru, Carole David, Ionut Radu, Lucianna Capello, Yann Sinquin
  • Publication number: 20140326416
    Abstract: The disclosure relates to a method for separating a layer from a composite structure, the structure comprising a composite stack formed from at least a support substrate, which is partially transparent at a determined wavelength, the layer to be separated and a separation layer interposed between the support substrate and the layer to be separated, the method comprising irradiation of the separation layer through the support substrate by means of incident light ray at the determined wavelength in order to induce weakening or separation by exfoliation of the separation layer, the light ray being inclined so as to form an angle of incidence ? such that ?>?min, where ?min=sin?1((n1/n0)sin(tan?1(s/2h))), n1 and n0, respectively, being the refractive index of the support substrate and the refractive index of the external medium in contact with the support substrate, from which the ray comes, S being the width of the ray and h being the thickness of the support substrate.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 6, 2014
    Applicant: SOITEC
    Inventor: Didier Landru