Patents by Inventor Dmitry Lubomirsky

Dmitry Lubomirsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490418
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: November 26, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10468285
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 10468276
    Abstract: A workpiece holder includes a puck having a cylindrical axis, a radius about the cylindrical axis, and a thickness. At least a top surface of the puck is substantially planar, and the puck defines one or more thermal breaks. Each thermal break is a radial recess that intersects at least one of the top surface and a bottom surface of the cylindrical puck. The radial recess has a thermal break depth that extends through at least half of the puck thickness, and a thermal break radius that is at least one-half of the puck radius. A method of processing a wafer includes processing the wafer with a first process that provides a first center-to-edge process variation, and subsequently, processing the wafer with a second process that provides a second center-to-edge process variation that substantially compensates for the first center-to-edge process variation.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky
  • Patent number: 10460915
    Abstract: A substrate support assembly includes a shaft assembly, a pedestal coupled to a portion of the shaft assembly, and a first rotary connector coupled to the shaft assembly, wherein the first rotary connector comprises a first coil member surrounding a rotatable shaft member that is electrically coupled to the shaft assembly, the first coil member being rotatable with the rotatable shaft, and a second coil member surrounding the first coil member, the second coil member being stationary relative to the first coil member, wherein the first coil member electrically couples with the second coil member when the rotating radio frequency applicator is energized and provides a radio frequency signal/power to the pedestal through the shaft assembly.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satoru Kobayashi, Kirby Hane Floyd, Hiroji Hanawa, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20190323127
    Abstract: Systems and methods may be used to produce coated components. Exemplary chamber components may include an aluminum plate defining a plurality of apertures. The plate may include a nickel coating on a textured aluminum plate to provide for adhesion. Implementing the present technology, the nickel coating may be firmly affixed with or without first applying an intermediate adhesion layer. Deleterious components from the intermediate adhesion layer (if present) may not contaminate substrates as readily as a consequence of the texturing of the aluminum plate. The contamination from the intermediate adhesion layer is undesirable and may electrically compromise semiconductor devices during processing.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20190326099
    Abstract: A rotating microwave is established for any resonant mode TEmnl or TMmnl of a cavity, where the user is free to choose the values of the mode indices m, n and l. The fast rotation, the rotation frequency of which is equal to an operational microwave frequency, is accomplished by setting the temporal phase difference ?Ø and the azimuthal angle ?? between two microwave input ports P and Q as functions of m, n and l. The slow rotation of frequency ?a (typically 1-1000 Hz), is established by transforming dual field inputs ? cos ?at and ±? sin ?at in the orthogonal input system into an oblique system defined by the angle ?? between two microwave ports P and Q.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Satoru Kobayashi, Hideo Sugai, Toan Tran, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10453655
    Abstract: A plasma reactor for processing a workpiece has a microwave source with a digitally synthesized rotation frequency using direct digital up-conversion and a user interface for controlling the rotation frequency.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: October 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Soonam Park, Kartik Ramaswamy, Dmitry Lubomirsky
  • Publication number: 20190318911
    Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes, and the gap distance is between 0.005 inch and 0.050 inch.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
  • Publication number: 20190311883
    Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
  • Publication number: 20190311884
    Abstract: A method, system, and apparatus for reducing particle generation on a showerhead during an ion bombarding process in a process chamber are provided. First and second RF signals are supplied from an RF generator to an electrode embedded in a substrate support in the process chamber. The second RF signal is adjusted relative to the first RF signal in response to a measurement of a first RF amplitude, a second RF amplitude, a first RF phase, and a second RF phase. Ion bombardment on a substrate is maximized and the quantity of particles generated on the showerhead is minimized. Methods and systems described herein provide for improved ion etching characteristics while reducing the amount of debris particles generated from the showerhead.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 10, 2019
    Inventors: Satoru KOBAYASHI, Wei TIAN, Shahid RAUF, Junghoon KIM, Soonam PARK, Dmitry LUBOMIRSKY
  • Publication number: 20190304756
    Abstract: Systems and methods may be used to produce coated components. Exemplary chamber components may include an aluminum, stainless steel, or nickel plate defining a plurality of apertures. The plate may include a hybrid coating, and the hybrid coating may include a first layer comprising a corrosion resistant coating. The first layer may extend conformally through each aperture of the plurality of apertures. The hybrid coating may also include a second layer comprising an erosion resistant coating extending across a plasma-facing surface of the semiconductor chamber component.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 3, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Toan Q. Tran, Lili Ji, Dmitry Lubomirsky, Akhil Devarakonda, Tien Fak Tan, Tae Won Kim, Saravjeet Singh, Alexander Tam, Jingchun Zhang, Jing J. Zhang
  • Patent number: 10431435
    Abstract: A wafer carrier is described with independent isolated heater zones. In one example, the carrier has a puck to carry a workpiece for fabrication processes, a heater plate having a plurality of thermally isolated blocks each thermally coupled to the puck, and each having a heater to heat a respective block of the heater plate, and a cooling plate fastened to and thermally coupled to the heater plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Son T. Nguyen, Anh N. Nguyen, David Palagashvill
  • Patent number: 10431429
    Abstract: A system includes a process chamber, a housing that defines a waveguide cavity, and a first conductive plate within the housing. The first conductive plate faces the process chamber. The system also includes one or more adjustment devices that can adjust at least a position of the first conductive plate, and a second conductive plate, coupled with the housing, between the waveguide cavity and the process chamber. Electromagnetic radiation can propagate from the waveguide cavity into the process chamber through apertures in the second conductive plate. The system also includes a dielectric plate that seals off the process chamber from the waveguide cavity, and one or more electronics sets that transmit the electromagnetic radiation into the waveguide cavity. A plasma forms when at least one process gas is within the chamber, and the electromagnetic radiation propagates into the process chamber from the waveguide cavity.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Nikolai Kalnin, Soonam Park, Toan Tran, Dmitry Lubomirsky
  • Patent number: 10424485
    Abstract: Methods of etching a patterned substrate may include flowing an oxygen-containing precursor into a first remote plasma region fluidly coupled with a substrate processing region. The oxygen-containing precursor may be flowed into the region while forming a plasma in the first remote plasma region to produce oxygen-containing plasma effluents. The methods may also include flowing a fluorine-containing precursor into a second remote plasma region fluidly coupled with the substrate processing region while forming a plasma in the second remote plasma region to produce fluorine-containing plasma effluents. The methods may include flowing the oxygen-containing plasma effluents and fluorine-containing plasma effluents into the processing region, and using the effluents to etch a patterned substrate housed in the substrate processing region.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 24, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Dmitry Lubomirsky, Xinglong Chen, Shankar Venkataraman
  • Publication number: 20190272998
    Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
  • Publication number: 20190272999
    Abstract: Exemplary magnetic induction plasma systems for generating plasma products are provided. The magnetic induction plasma system may include a first plasma source including a plurality of first sections and a plurality of second sections arranged in an alternating manner and fluidly coupled with each other such that at least a portion of plasma products generated inside the first plasma source may circulate through at least one of the plurality of first sections and at least one of the plurality of second sections inside the first plasma source. Each of the plurality of second sections may include a dielectric material. The system may further include a plurality of first magnetic elements each of which may define a closed loop. Each of the plurality of second sections may define a plurality of recesses for receiving one of the plurality of first magnetic elements therein.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonwook Jung, Junghoon Kim, Satoru Kobayashi, Kenneth D. Schatz, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20190259580
    Abstract: Methods and systems for etching substrates using a remote plasma are described. Remotely excited etchants are formed in a remote plasma and flowed through a showerhead into a substrate processing region to etch the substrate. Optical emission spectra are acquired from the substrate processing region just above the substrate. The optical emission spectra may be used to determine an endpoint of the etch, determine the etch rate or otherwise characterize the etch process. A weak plasma may be present in the substrate processing region. The weak plasma may have much lower intensity than the remote plasma. In cases where no bias plasma is used above the substrate in an etch process, a weak plasma may be ignited near a viewport disposed near the side of the substrate processing region to characterize the etchants.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonam Park, Junghoon Kim, Dmitry Lubomirsky, Shankar Venkataraman
  • Publication number: 20190252154
    Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 15, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky
  • Publication number: 20190233343
    Abstract: A heat treated ceramic article includes a ceramic substrate and a ceramic coating on the ceramic substrate. The ceramic coating is a non-sintered ceramic coating that has a different composition than the ceramic substrate. The heat treated ceramic article further includes a transition layer between the ceramic substrate and the ceramic coating, the transition layer comprising first elements from the ceramic coating that have reacted with second elements from the ceramic substrate, wherein the transition layer has a thickness of about 0.1 microns to about 5 microns.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Biraja P. Kanungo, Dmitry Lubomirsky
  • Patent number: 10364197
    Abstract: A heat treated ceramic article includes a ceramic substrate and a ceramic coating on the ceramic substrate. The ceramic coating is a non-sintered ceramic coating that has a different composition than the ceramic substrate. The heat treated ceramic article further includes a transition layer between the ceramic substrate and the ceramic coating, the transition layer comprising first elements from the ceramic coating that have reacted with second elements from the ceramic substrate, wherein the transition layer has a thickness of about 0.1 microns to about 5 microns.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: July 30, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Biraja P. Kanungo, Dmitry Lubomirsky