Patents by Inventor Dmitry Lubomirsky

Dmitry Lubomirsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10354843
    Abstract: Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 16, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Qiwei Liang, Xinglong Chen, Kien Chuc, Dmitry Lubomirsky, Soonam Park, Jang-Gyoo Yang, Shankar Venkataraman, Toan Tran, Kimberly Hinckley, Saurabh Garg
  • Publication number: 20190206660
    Abstract: A method for conditioning a semiconductor chamber component may include passivating the chamber component with an oxidizer. The method may also include performing a number of chamber process operation cycles in a semiconductor processing chamber housing the chamber component until the process is stabilized. The number of chamber operation cycles to stabilize the process may be less than 10% of the amount otherwise used with conventional techniques.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 4, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Sung Je Kim
  • Patent number: 10340124
    Abstract: A rotating microwave is established for any resonant mode TEmnl or TMmnl of a cavity, where the user is free to choose the values of the mode indices m, n and l. The fast rotation, the rotation frequency of which is equal to an operational microwave frequency, is accomplished by setting the temporal phase difference ?Ø and the azimuthal angle ?? between two microwave input ports P and Q as functions of m, n and l. The slow rotation of frequency ?? (typically 1-1000 Hz), is established by transforming dual field inputs ? cos ??t and ±? sin ??t in the orthogonal input system into an oblique system defined by the angle ?? between two microwave ports P and Q.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 2, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Toan Tran, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20190198291
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber may include a showerhead positioned within the chamber housing, and the showerhead may at least partially divide the interior region into a remote region and a processing region in which a substrate can be contained. The chamber may also include an inductively coupled plasma source positioned between the showerhead and the processing region. The inductively coupled plasma source may include a conductive material within a dielectric material.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Applicant: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Publication number: 20190189399
    Abstract: Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: SATORU KOBAYASHI, LANCE SCUDDER, DAVID BRITZ, SOONAM PARK, DMITRY LUBOMIRSKY, HIDEO SUGAI
  • Patent number: 10319649
    Abstract: Methods and systems for etching substrates using a remote plasma are described. Remotely excited etchants are formed in a remote plasma and flowed through a showerhead into a substrate processing region to etch the substrate. Optical emission spectra are acquired from the substrate processing region just above the substrate. The optical emission spectra may be used to determine an endpoint of the etch, determine the etch rate or otherwise characterize the etch process. A weak plasma may be present in the substrate processing region. The weak plasma may have much lower intensity than the remote plasma. In cases where no bias plasma is used above the substrate in an etch process, a weak plasma may be ignited near a viewport disposed near the side of the substrate processing region to characterize the etchants.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonam Park, Junghoon Kim, Dmitry Lubomirsky, Shankar Venkataraman
  • Patent number: 10297458
    Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
  • Publication number: 20190139743
    Abstract: An exemplary faceplate may include a conductive plate defining a plurality of apertures. The faceplate may additionally include a plurality of inserts, and each one of the plurality of inserts may be disposed within one of the plurality of apertures. Each insert may define at least one channel through the insert to provide a flow path through the faceplate.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 9, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Xinglong Chen, Dmitry Lubomirsky, Shankar Venkataraman
  • Patent number: 10283321
    Abstract: Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: May 7, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jang-Gyoo Yang, Matthew L. Miller, Xinglong Chen, Kien N. Chuc, Qiwei Liang, Shankar Venkataraman, Dmitry Lubomirsky
  • Publication number: 20190119815
    Abstract: Systems and methods may be used to enact plasma filtering. Exemplary processing chambers may include a showerhead. The processing chambers may include a substrate support. The processing chambers may include a power source electrically coupled with the substrate support and configured to provide power to the substrate support to produce a bias plasma within a processing region defined between the showerhead and the substrate support. The processing systems may include a plasma screen coupled with the substrate support and configured to substantially eliminate plasma leakage through the plasma screen. The plasma screen may be coupled with electrical ground.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Toan Q. Tran, Nikolai Kalnin, Dmitry Lubomirsky, Akhil Devarakonda
  • Patent number: 10271416
    Abstract: A plasma processing apparatus may include a process chamber having an interior processing volume, first, second and third RF coils disposed proximate the process chamber to couple RF energy into the processing volume, wherein the second RF coil disposed coaxially with respect to the first RF coil, and wherein the third RF coil disposed coaxially with respect to the first and second RF coils, at least one ferrite shield disposed proximate to at least one of the first, second or third RF coils, wherein the ferrite shield is configured to locally guide a magnetic field produced by an RF current flow through the first, second or third RF coils toward the process chamber, wherein the plasma processing apparatus is configured to control a phase of each RF current flow through each of the of the first, second or third RF coils.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Samer Banna, Waheb Bishara, Ryan Giar, Valentin Todorow, Dmitry Lubomirsky, Kyle R. Tantiwong
  • Publication number: 20190109025
    Abstract: A workpiece holder includes a puck, first and second heating devices in thermal communication with respective inner and outer portions of the puck, and a thermal sink in thermal communication with the puck. The first and second heating devices are independently controllable, and the first and second heating devices are in greater thermal communication with the puck, than thermal communication of the thermal sink with the puck. A method of controlling temperature distribution of a workpiece includes flowing a heat exchange fluid through a thermal sink to establish a reference temperature to a puck, raising temperatures of radially inner and outer portions of the puck to first and second temperatures greater than the reference temperature, by activating respective first and second heating devices disposed in thermal communication with the radially inner and outer portions of the puck, and placing the workpiece on the puck.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 11, 2019
    Applicant: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky, Ananda Seelavanth Math, Saravanakumar Natarajan, Shubham Chourey
  • Publication number: 20190108981
    Abstract: A plasma reactor for processing a workpiece has a microwave source with a digitally synthesized rotation frequency using direct digital up-conversion and a user interface for controlling the rotation frequency.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 11, 2019
    Inventors: Satoru Kobayashi, Hideo Sugai, Soonam Park, Kartik Ramaswamy, Dmitry Lubomirsky
  • Patent number: 10256079
    Abstract: An exemplary system may include a chamber configured to contain a semiconductor substrate in a processing region of the chamber. The system may include a first remote plasma unit fluidly coupled with a first access of the chamber and configured to deliver a first precursor into the chamber through the first access. The system may still further include a second remote plasma unit fluidly coupled with a second access of the chamber and configured to deliver a second precursor into the chamber through the second access. The first and second access may be fluidly coupled with a mixing region of the chamber that is separate from and fluidly coupled with the processing region of the chamber. The mixing region may be configured to allow the first and second precursors to interact with each other externally from the processing region of the chamber.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Xinglong Chen, Shankar Venkataraman
  • Patent number: 10253406
    Abstract: The present disclosure generally relates to methods of electro-chemically forming yttria or yttrium oxide. The methods may include the optional preparation of a an electrochemical bath, the electrodepositon of yttria or yttrium oxide onto a substrate, removal of solvent form the surface of the substrate, and post treatment of the substrate having the electrodeposited yttria or yttrium oxide thereon.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Prerna S. Goradia, Geetika Bajaj, Yogita Pareek, Yixing Lin, Dmitry Lubomirsky, Ankur Kadam, Bipin Thakur, Kevin A. Papke, Kaushik Vaidya
  • Patent number: 10233554
    Abstract: The present disclosure generally relates to methods of electro-chemically forming aluminum or aluminum oxide. The methods may include the optional preparation of a an electrochemical bath, the electrodepositon of aluminum or aluminum oxide onto a substrate, removal of solvent form the surface of the substrate, and post treatment of the substrate having the electrodeposited aluminum or aluminum oxide thereon.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yogita Pareek, Laksheswar Kalita, Geetika Bajaj, Kevin A. Papke, Ankur Kadam, Bipin Thakur, Yixing Lin, Dmitry Lubomirsky, Prerna S. Goradia
  • Patent number: 10224210
    Abstract: A plasma processing system includes a process chamber and a plasma source that generates a plasma in a plasma cavity. The plasma cavity is substantially symmetric about a toroidal axis. The plasma source defines a plurality of outlet apertures on a first axial side of the plasma cavity Plasma products produced by the plasma pass in the axial direction, through the plurality of outlet apertures, from the plasma cavity toward the process chamber. A method of plasma processing includes generating a plasma within a substantially toroidal plasma cavity that defines a toroidal axis, to form plasma products, and distributing the plasma products to a process chamber through a plurality of outlet openings substantially azimuthally distributed about a first axial side of the plasma cavity, directly into a process chamber.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 5, 2019
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10224180
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber may include a showerhead positioned within the chamber housing, and the showerhead may at least partially divide the interior region into a remote region and a processing region in which a substrate can be contained. The chamber may also include an inductively coupled plasma source positioned between the showerhead and the processing region. The inductively coupled plasma source may include a conductive material within a dielectric material.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: March 5, 2019
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10214815
    Abstract: Methods and apparatus relating to aluminum nitride baffles are provided herein. In some embodiments, a baffle for use in semiconductor process chambers may include a body comprising aluminum nitride and a metal oxide binding agent, wherein a ratio of aluminum nitride to metal oxide on a surface of the body is greater than or equal to the ratio within the body. In some embodiments, the body may have a center stem and an outer annulus coupled to and extending radially outwards from a lower portion of the center stem. In some embodiments, a method of fabricating a baffle may include sintering aluminum, nitrogen, and a metal oxide binding agent to form a body of the baffle, the body having excess metal oxide binding agent disposed on a surface thereof; and removing a bulk of the excess metal oxide binding agent from a surface of the body.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: February 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Dmitry Lubomirsky
  • Publication number: 20190043726
    Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.
    Type: Application
    Filed: August 7, 2017
    Publication date: February 7, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia