Patents by Inventor Ebenezer E. Eshun

Ebenezer E. Eshun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7768055
    Abstract: Passive components are formed in the back end by using the same deposition process and materials as in the rest of the back end. Resistors are formed by connecting in series individual structures on the nth, (n+1)th, etc levels of the back end. Capacitors are formed by constructing a set of vertical capacitor plates from a plurality of levels in the back end, the plates being formed by connecting electrodes on two or more levels of the back end by vertical connection members.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Jeffrey B. Johnson, Jonghae Kim, Jean-Oliver Plouchart, Anthony K. Stamper
  • Publication number: 20100149723
    Abstract: The invention is directed to an improved capacitor that reduces edge defects and prevents yield failures. A first embodiment of the invention comprises a protective layer adjacent an interface of a conductive layer with the insulator, while the second embodiment of the invention comprises a protective layer on an insulator which is on a conductive layer.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 17, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: EBENEZER E. ESHUN, RONALD J. BOLAM, DOUGLAS D. COOLBAUGH, KEITH E. DOWNES, NATALIE B. FEILCHENFELD, ZHONG-XIANG HE
  • Patent number: 7728372
    Abstract: The invention is directed to an improved capacitor that reduces edge defects and prevents yield failures. A first embodiment of the invention comprises a protective layer adjacent an interface of a conductive layer with the insulator, while the second embodiment of the invention comprises a protective layer on an insulator which is on a conductive layer.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ebenezer E. Eshun, Ronald J. Bolam, Douglas D. Coolbaugh, Keith E. Downes, Natalie B. Feilchenfeld, Zhong-Xiang He
  • Patent number: 7691717
    Abstract: A polysilicon containing resistor includes: (1) a p dopant selected from the group consisting of boron and boron difluoride; and (2) an n dopant selected from the group consisting of arsenic and phosphorus. Each of the p dopant and the n dopant has a dopant concentration from about 1e18 to about 1e21 dopant atoms per cubic centimeter. A method for forming the polysilicon resistor uses corresponding implant doses from about 1e14 to about 1e16 dopant ions per square centimeter. The p dopant and the n dopant may be provided simultaneously or sequentially. The method provides certain polysilicon resistors with a sheet resistance percentage standard deviation of less than about 1.5%, for a polysilicon resistor having a sheet resistance from about 100 to about 5000 ohms per square.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Ebenezer E. Eshun, John E. Florkey, Robert M. Rassel, Kunal Vaed
  • Patent number: 7687867
    Abstract: A method to integrate MIM capacitors into conductive interconnect levels, with low cost impact, and high yield, reliability and performance than existing integration methods is provided. This is accomplished by recessing a prior level dielectric for MIM capacitor level alignment followed by deposition and patterning of the MIM capacitor films. Specifically, the method includes providing a substrate including a wiring level, the wiring level comprising at least one conductive interconnect formed in a dielectric layer; selectively removing a portion of the dielectric layer to recess the dielectric layer below an upper surface of the at least one conductive interconnect; forming a dielectric stack upon the at least one conductive interconnect and the recessed dielectric layer; and forming a metal-insulator-metal (MIM) capacitor on the dielectric stack. The MIM capacitor includes a bottom plate electrode, a dielectric and a top plate electrode.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: March 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, William J. Murphy, Vidhya Ramachandran
  • Patent number: 7670921
    Abstract: A method of forming a metal-insulator-metal (MIM) capacitor includes forming a first planar dielectric layer with a first metallization layer therein; forming a first passivation layer on top thereof; forming a planar conductive layer above the first passivation layer; patterning and selectively removing the conductive layer up to the first passivation layer in designated areas to form a set of conductive features; patterning and conformally coating the set of conductive features and the exposed first passivation layer with a high strength dielectric coating; disposing a second dielectric layer above the first passivation layer and enclosing the set of conductive features; patterning and selectively removing portions of the second substrate to form channels and trenches; performing a dual-Damascene process to form a second metallization layer in the trenches and channels and to form an upper conductive surface above the high strength dielectric coating.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Anthony K. Stamper, Richard P. Volant
  • Patent number: 7662722
    Abstract: A method is provided for fabricating a microelectronic chip which includes a passive device such, as an inductor, overlying an air gap. In such method, a plurality of front-end-of-line (“FEOL”) devices are formed in a semiconductor region of the microelectronic chip, and a plurality of stacked interlevel dielectric (“ILD”) layers are formed to overlie the plurality of FEOL devices, the plurality of stacked ILD layers including a first ILD layer and a second ILD layer, where the second ILD layer is resistant to attack by a first etchant which attacks the first ILD layer. A passive device is formed to overlie at least the first ILD layer. Using the first etchant, a portion of the first ILD layer in registration with the passive device is removed to form an air gap which underlies the passive device in registration with the passive device.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: February 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anthony K. Stamper, Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, William J. Murphy, Kunal Vaed
  • Patent number: 7659176
    Abstract: Tunable TCR resistors incorporated into integrated circuits and a method fabricating the tunable TCR resistors. The tunable TCR resistors including two or more resistors of two or more different materials having opposite polarity and different magnitude TCRs, the same polarity and different magnitude TCRs or having opposite polarity and about the same TCRs.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Richard J. Rassel, Robert M. Rassel
  • Patent number: 7645675
    Abstract: A parallel plate capacitor formed in the back end of an integrated circuit employs conductive capacitor plates that are formed simultaneously with the other interconnects on that level of the back end (having the same material, thickness, etc). The capacitor plates are set into the interlevel dielectric using the same process as the other interconnects on that level of the back end (preferably dual damascene). Some versions of the capacitors have perforations in the plates and vertical conductive members connecting all plates of the same polarity, thereby increasing reliability, saving space and increasing the capacitive density compared with solid plates.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Hanyi Ding, Ebenezer E. Eshun, Michael D. Gordon, Zhong-Xiang He, Anthony K. Stamper
  • Publication number: 20090283840
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Ephrem G. Gebreselasie, Zhong-Xiang He, Herbert Lei Ho, Deok-kee Kim, Chandrasekharan Kothandaraman, Dan Moy, Robert Mark Rassel, John Matthew Safran, Kenneth Jay Stein, Norman Whitelaw Robson, Ping-Chuan Wang, Hongwen Yan
  • Publication number: 20090253239
    Abstract: A method for fabricating a low-value resistor such as a ballast resistor for bipolar junction transistors. The resistor may be fabricated using layers of appropriate sheet resistance so as to achieve low resistance values in a compact layout. The method may rely on layers already provided by a conventional CMOS process flow, such as contact plugs and fully silicided (FUSI) metal gates.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 8, 2009
    Applicant: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Robert M. Rassel, Kimball M. Watson
  • Patent number: 7585722
    Abstract: The invention is directed to an integrated circuit comb capacitor with capacitor electrodes that have an increased capacitance between neighboring capacitor electrodes as compared with other interconnects and via contacts formed in the same metal wiring level and at the same pitches. The invention achieves a capacitor that minimizes capacitance tolerance and preserves symmetry in parasitic electrode-substrate capacitive coupling, without adversely affecting other interconnects and via contacts formed in the same wiring level, through the use of, at most, one additional noncritical, photomask.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: September 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Anil K. Chinthakindi, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Sarah L. Lane, Anthony K. Stamper
  • Publication number: 20090155993
    Abstract: Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
    Type: Application
    Filed: January 6, 2009
    Publication date: June 18, 2009
    Inventors: Douglas D. Coolbaugh, Daniel C. Edelstein, Ebenezer E. Eshun, Zhong-Xiang He, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 7528048
    Abstract: Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, Kevin S. Petrarca, Anthony K. Stamper, Richard P. Volant
  • Patent number: 7511940
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Natalie B. Feilchenfeld, Michael L. Gautsch, Zhong-Xiang He, Matthew D. Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Publication number: 20090065898
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 12, 2009
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 7494912
    Abstract: Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Daniel C. Edelstein, Ebenezer E. Eshun, Zhong-Xiang He, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 7488643
    Abstract: A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, the upper plate having a top surface, a bottom surface and sidewalls; a spreader plate comprising one or more electrically conductive layers, the spreader plate having a top surface, a bottom surface and sidewalls; and a dielectric block comprising one or more dielectric layers the dielectric block having a top surface, a bottom surface and sidewalls, the top surface of the dielectric block in physical contact with the bottom surface of the upper plate, the bottom surface of the dielectric block over the top surface of the spreader plate, the sidewalls of the upper plate and the dielectric block essentially co-planer.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas Duane Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Robert Mark Rassel
  • Patent number: 7485540
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Publication number: 20090019414
    Abstract: A resistor device structure and method of manufacture therefore, wherein the resistor device structure invention includes a plurality of alternating conductive film and insulative film layers, at least two of the conductive film layers being electrically connected in parallel to provide for high current flow through the resistor device at high frequencies with increased temperature and mechanical stability. The alternating conductive film and insulative film layers may be of a planar or non-planar geometric spatial orientation. The alternating conductive film and insulative film layers may include lateral and vertical portions designed to enable a uniform current density flow within the structure itself through a self-ballasting effect within the physical resistor.
    Type: Application
    Filed: September 19, 2008
    Publication date: January 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ebenezer E. Eshun, Steven H. Voldman