Patents by Inventor Ebenezer E. Eshun

Ebenezer E. Eshun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080003759
    Abstract: Methods of fabricating a passive element and a semiconductor device including the passive element are disclosed including the use of a dummy passive element. A dummy passive element is a passive element or wire which is added to the chip layout to aid in planarization but is not used in the active circuit. One embodiment of the method includes forming the passive element and a dummy passive element adjacent to the passive element; forming a dielectric layer over the passive element and the dummy passive element, wherein the dielectric layer is substantially planar between the passive element and the dummy passive element; and forming in the dielectric layer an interconnect to the passive element through the dielectric layer and a dummy interconnect portion overlapping at least a portion of the dummy passive element. The methods eliminate the need for planarizing.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anil K. Chinthakindi, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Anthony K. Stamper, Kunal Vaed
  • Publication number: 20070296085
    Abstract: A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, the upper plate having a top surface, a bottom surface and sidewalls; a spreader plate comprising one or more electrically conductive layers, the spreader plate having a top surface, a bottom surface and sidewalls; and a dielectric block comprising one or more dielectric layers the dielectric block having a top surface, a bottom surface and sidewalls, the top surface of the dielectric block in physical contact with the bottom surface of the upper plate, the bottom surface of the dielectric block over the top surface of the spreader plate, the sidewalls of the upper plate and the dielectric block essentially co-planer.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas Duane Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Robert Mark Rassel
  • Patent number: 7310036
    Abstract: A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: December 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Terence B. Hook, Robert M. Rassel, Edmund J. Sprogis, Anthony K Stamper, William J. Murphy
  • Patent number: 7303972
    Abstract: A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Incorporated
    Inventors: Eric M. Coker, Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Matthew D. Moon, Anthony K. Stamper
  • Patent number: 7301752
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: November 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Natalie B. Feilchenfeld, Michael L. Gautsch, Zhong-Xiang He, Matthew D. Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Patent number: 7282404
    Abstract: A method to integrate MIM capacitors into conductive interconnect levels, with low cost impact, and high yield, reliability and performance than existing integration methods is provided. This is accomplished by recessing a prior level dielectric for MIM capacitor level alignment followed by deposition and patterning of the MIM capacitor films. Specifically, the method includes providing a substrate including a wiring level, the wiring level comprising at least one conductive interconnect formed in a dielectric layer; selectively removing a portion of the dielectric layer to recess the dielectric layer below an upper surface of the at least one conductive interconnect; forming a dielectric stack upon the at least one conductive interconnect and the recessed dielectric layer; and forming a metal-insulator-metal (MIM) capacitor on the dielectric stack. The MIM capacitor includes a bottom plate electrode, a dielectric and a top plate electrode.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, William J. Murphy, Vidhya Ramachandran
  • Patent number: 7271700
    Abstract: A thin film resistor device and method of manufacture includes a layer of a thin film conductor material and a current density enhancing layer (CDEL). The CDEL is an insulator material adapted to adhere to the thin film conductor material and enables the said thin film resistor to carry higher current densities with reduced shift in resistance. In one embodiment, the thin film resistor device includes a single CDEL layer formed on one side (atop or underneath) the thin film conductor material. In a second embodiment, two CDEL layers are formed on both sides (atop and underneath) of the thin film conductor material. The resistor device may be manufactured as part of both BEOL and FEOL processes.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Ebenezer E. Eshun
  • Publication number: 20070158717
    Abstract: The invention is directed to an integrated circuit comb capacitor with capacitor electrodes that have an increased capacitance between neighboring capacitor electrodes as compared with other interconnects and via contacts formed in the same metal wiring level and at the same pitches. The invention achieves a capacitor that minimizes capacitance tolerance and preserves symmetry in parasitic electrode-substrate capacitive coupling, without adversely affecting other interconnects and via contacts formed in the same wiring level, through the use of, at most, one additional noncritical, photomask.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 12, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Anil K. Chinthakindi, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Sarah L. Lane, Anthony K. Stamper
  • Patent number: 7239006
    Abstract: A structure for resistors and the method for tuning the same. The resistor comprises an electrically conducting region coupled to a liner region. Both the electrically conducting region and the liner region are electrically coupled to first and second contact regions. A voltage difference is applied between the first and second contact regions. As a result, a current flows between the first and second contact regions in the electrically conducting region. The voltage difference and the materials of the electrically conducting region and the liner region are such that electromigration occurs only in the electrically conducting region. As a result, a void region within the electrically conducting region expands in the direction of the flow of the charged particles constituting the current. Because the resistor loses a conducting portion of the electrically conducting region to the void region, the resistance of the resistor is increased (i.e., tuned).
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: July 3, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 7217981
    Abstract: Tunable TCR resistors incorporated into integrated circuits and a method fabricating the tunable TCR resistors. The tunable TCR resistors including two or more resistors of two or more different materials having opposite polarity and different magnitude TCRs, the same polarity and different magnitude TCRs or having opposite polarity and about the same TCRs.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Richard J. Rassel, Robert M Rassel
  • Patent number: 7145218
    Abstract: The invention relates to integration of a thin-film resistor in a wiring level, such as, for example, an aluminum back-end-of-line (BEOL) technology. The thin-film resistor is formed in a wiring level on, for example, an upper surface of a dielectric layer. The thin-film resistor includes end portions tapered at an angle less than 90 degrees with respect to the upper surface. The tapered end portions provide increased surface area for making contact to the thin-film resistor without adversely affecting the resistance value of the thin-film resistor.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: December 5, 2006
    Assignee: International Business Machines Corporation
    Inventor: Ebenezer E. Eshun
  • Patent number: 7098521
    Abstract: Schottky barrier diodes use a dielectric separation region to bound an active region. The dielectric separation region permits the elimination of a guard ring in at least one dimension. Further, using a dielectric separation region in an active portion of the integrated circuit device may reduce or eliminate parasitic capacitance by eliminating this guard ring.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Alvin J. Joseph, Robert M. Rassel
  • Patent number: 6992344
    Abstract: The invention is directed to unique high-surface area BEOL capacitor structures with high-k dielectric layers and methods for fabricating the same. These high-surface area BEOL capacitor structures may be used in analog and mixed signal applications. The capacitor is formed within a trench with pedestals within the trench to provide additional surface area. The top and bottom electrodes are created using damascene integration scheme. The dielectric layer is created as a multilayer dielectric film comprising for instance Al2O3, Al2O3/Ta2O5, Al2O3/Ta2O5/Al2O3 and the like. The dielectric layer may be deposited by methods like atomic layer deposition or chemical vapor deposition. The dielectric layer used in the capacitor may also be produced by anodic oxidation of a metallic precursor to yield a high dielectric constant oxide layer.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: January 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Kenneth J. Stein, Kunal Vaed, Richard P. Volant
  • Patent number: 6969903
    Abstract: A resistor device structure and method of manufacture therefore, wherein the resistor device structure invention includes a plurality of alternating conductive film and insulative film layers, at least two of the conductive film layers being electrically connected in parallel to provide for high current flow through the resistor device at high frequencies with increased temperature and mechanical stability. The alternating conductive film and insulative film layers may be of a planar or non-planar geometric spatial orientation. The alternating conductive film and insulative film layers may include lateral and vertical portions designed to enable a uniform current density flow within the structure itself through a self-ballasting effect within the physical resistor.
    Type: Grant
    Filed: January 19, 2004
    Date of Patent: November 29, 2005
    Assignee: International Business Machines Corporation
    Inventors: Ebenezer E. Eshun, Steven H. Voldman
  • Patent number: 6940117
    Abstract: The present invention provides a high-performance metal-insulator-metal (MIM) capacitor which contains a high-k dielectric, yet no substantial shorting of the MIM capacitor is observed. Specifically, shorting of the MIM capacitor is substantially prevented in the present invention by forming a passivation layer between the high-k dielectric layer and each of the capacitor's electrodes. The inventive MIM capacitor includes a first conductor; a first passivation layer located atop the first conductor; a high-k dielectric layer located atop the first passivation layer; a second passivation layer located atop the high k dielectric layer; and a second conductor located atop the second passivation layer.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Joseph F. Shepard, Jr., Kenneth J. Stein, Kunal Vaed
  • Patent number: 6876028
    Abstract: A method and structure for a MIM capacitor, the structure including: an electronic device, comprising: an interlevel dielectric layer formed on a semiconductor substrate; a copper bottom electrode formed in the interlevel dielectric layer, a top surface of the bottom electrode co-planer with a top surface of the interlevel dielectric layer; a conductive diffusion barrier in direct contact with the top surface of the bottom electrode; a MIM dielectric in direct contact with a top surface of the conductive diffusion barrier; and a top electrode in direct contact with a top surface of the MIM dielectric. The conductive diffusion barrier may be recessed into the copper bottom electrode or an additional recessed conductive diffusion barrier provided. Compatible resistor and alignment mark structures are also disclosed.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Jeffrey P. Gambino, Zhong-Xiang He, Vidhya Ramachandran
  • Publication number: 20040113235
    Abstract: The invention is directed to unique high-surface area BEOL capacitor structures with high-k dielectric layers and methods for fabricating the same. These high-surface area BEOL capacitor structures may be used in analog and mixed signal applications. The capacitor is formed within a trench with pedestals within the trench to provide additional surface area. The top and bottom electrodes are created using damascene integration scheme. The dielectric layer is created as a multilayer dielectric film comprising for instance Al2O3, Al2O3/Ta2O5, Al2O3/Ta2O5/Al2O3 and the like. The dielectric layer may be deposited by methods like atomic layer deposition or chemical vapor deposition. The dielectric layer used in the capacitor may also be produced by anodic oxidation of a metallic precursor to yield a high dielectric constant oxide layer.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Kenneth J. Stein, Kunal Vaed, Richard P. Volant
  • Publication number: 20040104420
    Abstract: The present invention provides a high-performance metal-insulator-metal (MIM) capacitor which contains a high-k dielectric, yet no substantial shorting of the MIM capacitor is observed. Specifically, shorting of the MIM capacitor is substantially prevented in the present invention by forming a passivation layer between the high-k dielectric layer and each of the capacitor“s electrodes. The inventive MIM capacitor includes a first conductor; a first passivation layer located atop the first conductor; a high-k dielectric layer located atop the first passivation layer; a second passivation layer located atop the high k dielectric layer; and a second conductor located atop the second passivation layer.
    Type: Application
    Filed: April 17, 2003
    Publication date: June 3, 2004
    Applicant: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Joseph F. Shepard, Kenneth J. Stein, Kunal Vaed