Patents by Inventor Edward Hartley Sargent

Edward Hartley Sargent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970501
    Abstract: The present invention relates to highly polarizable 3D organic perovskites of the general formula ABX3, prepared by introducing halogen functional groups in the A-site cation (in which the A and B sites are occupied by organic cations and the X site is a monovalent non-metallic counterion). The (DCl)(NH4)(BF4)3 crystal exhibits a strong linear electrooptic (EO) effect with an effective EO coefficient of 20 pmV?1, which is 10 times higher than that of metal halide perovskites. These 3D organic perovskites are solution processed and compatible with silicon, and illustrate the potential of rationally-designed all-organic perovskites for use in on-chip modulators, electro-optic devices, piezoelectric devices, or silicon photonics devices.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: April 30, 2024
    Assignee: HUAWEI TECHNOLOGIES CANADA CO., LTD.
    Inventors: Meng-Jia Sun, Chao Zheng, Sjoerd Hoogland, Edward Hartley Sargent
  • Publication number: 20220098209
    Abstract: The present invention relates to highly polarizable 3D organic perovskites of the general formula ABX3, prepared by introducing halogen functional groups in the A-site cation (in which the A and B sites are occupied by organic cations and the X site is a monovalent non-metallic counterion). The (DCl)(NH4)(BF4)3 crystal exhibits a strong linear electrooptic (EO) effect with an effective EO coefficient of 20 pmV?1, which is 10 times higher than that of metal halide perovskites. These 3D organic perovskites are solution processed and compatible with silicon, and illustrate the potential of rationally-designed all-organic perovskites for use in on-chip modulators, electro-optic devices, piezoelectric devices, or silicon photonics devices.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 31, 2022
    Applicant: Huawei Technologies Canada Co., Ltd.
    Inventors: Meng-Jia SUN, Chao ZHENG, Sjoerd HOOGLAND, Edward Hartley SARGENT
  • Publication number: 20220069236
    Abstract: Novel 2D organic-inorganic hybrid perovskites, including (4-CF3-PMA)2PbI4, that emit in the blue spectral region, and methods for making same. The CF3-substituted material exhibits a ˜0.16 eV larger bandgap than corresponding halogen-substituted materials. This family of materials offers a degree of freedom in tuning 2D perovskites to specific bandgaps for optoelectronic applications. These materials are highly stable, easily synthesized, and do not suffer from phase separation.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 3, 2022
    Applicant: Huawei Technologies Canada Co., Ltd.
    Inventors: Peixi WANG, Amin Morteza NAJJARIAN, Sjoerd HOOGLAND, Edward Hartley SARGENT
  • Publication number: 20210408399
    Abstract: A class of crystals comprises an inorganic lattice in which organic molecules are embedded, thereby allowing macroscopic electro-optic responsiveness. The lattice is based on a metal halide perovskite structure. The organic molecules can be with an intrinsic dipole such that when aligned and fixed in place in the inorganic lattice, they induce electro-optic responsiveness in the macroscopic crystal. Alternatively, their mere presence in the structure can induce sufficient polarity in the scaffold itself for a similar responsiveness. The molecules themselves can comprise a carbon backbone that is completely conductive, partially conductive, or non-conductive, as well as zero, one or two functional groups that allow binding to the lattice and increased polarity.
    Type: Application
    Filed: October 9, 2020
    Publication date: December 30, 2021
    Applicant: Huawei Technologies Canada Co., Ltd.
    Inventors: Sjoerd HOOGLAND, Grant William WALTERS, Yuan GAO, Edward Hartley SARGENT
  • Patent number: 10924703
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. In one embodiment, an integrated circuit includes an image sensing array region, a first photosensor having a light-sensitive region outside of the image sensing array region, and control circuitry. The control circuitry is arranged in a first mode to read out image data from the image sensing array region, where the data provide information indicative of an image incident on the image sensing array region of the integrated circuit. The control circuitry is arranged in a second mode to read out a signal from the first photosensor indicative of intensity of light incident on the light-sensitive region of the first photosensor. Electrical power consumed by the integrated circuit during the second mode is at least ten times lower than electrical power consumed by the integrated circuit during the first mode. Additional methods and apparatuses are described.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: February 16, 2021
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian, Emanuele Mandelli
  • Patent number: 10888864
    Abstract: Methods and devices for detecting metabolic activity of target cells in a sample. The target cells are concentrated in a nanoliter well having a microfilter. A reporter compound that exhibits a change in electrochemical state in response to metabolic activity of the target cells is introduced. Metabolic activity or viability of the target cells is detected based on a determined change in the electrochemical state of contents in the well.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: January 12, 2021
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana Olwyn Kelley, Edward Hartley Sargent, Justin David Besant
  • Patent number: 10707247
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor having at least two pixel electrodes per color region, and having at least two modes is disclosed. The example image sensor includes a first, unbinned, mode; and a second, binned, mode. In the first, unbinned mode, the at least two pixel electrodes per color region are to be reset to substantially similar levels. In the second, binned mode, a first pixel electrode of the at the least two pixel electrodes is to be reset to a high voltage that results in efficient collection of photocharge, and a second pixel electrode of the at the least two pixel electrodes is to be reset to a low voltage that results in less efficient collection of photocharge. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 7, 2020
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 10685999
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor is disclosed. The image sensor includes an optically sensitive material; a plurality of electrodes proximate the optically sensitive material, including at least a first electrode, a second electrode and a third electrode; and a charge store. The first electrode is coupled to the charge store, and the first electrode and the second electrode are configured to provide a bias to the optically sensitive material to direct photocarriers to the charge store. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 16, 2020
    Assignee: INVISAGE TECHNOLOGIES INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Emanuele Mandelli, Jae Park
  • Publication number: 20200084407
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. In one embodiment, an integrated circuit includes an image sensing array region, a first photosensor having a light-sensitive region outside of the image sensing array region, and control circuitry. The control circuitry is arranged in a first mode to read out image data from the image sensing array region, where the data provide information indicative of an image incident on the image sensing array region of the integrated circuit. The control circuitry is arranged in a second mode to read out a signal from the first photosensor indicative of intensity of light incident on the light-sensitive region of the first photosensor. Electrical power consumed by the integrated circuit during the second mode is at least ten times lower than electrical power consumed by the integrated circuit during the first mode. Additional methods and apparatuses are described.
    Type: Application
    Filed: November 20, 2019
    Publication date: March 12, 2020
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian, Emanuele Mandelli
  • Publication number: 20200030803
    Abstract: Methods and devices for detecting metabolic activity of target cells in a sample. The target cells are concentrated in a nanoliter well having a microfilter. A reporter compound that exhibits a change in electrochemical state in response to metabolic activity of the target cells is introduced. Metabolic activity or viability of the target cells is detected based on a determined change in the electrochemical state of contents in the well.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 30, 2020
    Inventors: Shana Olwyn KELLEY, Edward Hartley SARGENT, Justin David BESANT
  • Patent number: 10535699
    Abstract: An image sensor device includes a semiconductor substrate, including an array of pixel circuits, which define respective pixels of the device. A photosensitive layer is formed over the semiconductor substrate and configured to transfer charge to the pixel circuits in response to light incident on the photosensitive layer. An upper layer is formed over the photosensitive layer and is at least partially transparent to the light. Opaque partitions extend vertically through the upper layer in a checkerboard pattern aligned with the pixels in the array.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 14, 2020
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 10516072
    Abstract: Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: December 24, 2019
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Igor Constantin Ivanov, Edward Hartley Sargent, Hui Tian
  • Patent number: 10516845
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. In one embodiment, an integrated circuit includes an image sensing array region, a first photosensor having a light-sensitive region outside of the image sensing array region, and control circuitry. The control circuitry is arranged in a first mode to read out image data from the image sensing array region, where the data provide information indicative of an image incident on the image sensing array region of the integrated circuit. The control circuitry is arranged in a second mode to read out a signal from the first photosensor indicative of intensity of light incident on the light-sensitive region of the first photosensor. Electrical power consumed by the integrated circuit during the second mode is at least ten times lower than electrical power consumed by the integrated circuit during the first mode. Additional methods and apparatuses are described.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: December 24, 2019
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian, Emanuele Mandelli
  • Patent number: 10506147
    Abstract: In various embodiments, an imaging system and method are provided. In an embodiment, the system comprises a first image sensor array, a first optical system to project a first image on the first image sensor array, the first optical system having a first zoom level. A second optical system is to project a second image on a second image sensor array, the second optical system having a second zoom level. The second image sensor array and the second optical system are pointed in the same direction as the first image sensor array and the first optical system. The second zoom level is greater than the first zoom level such that the second image projected onto the second image sensor array is a zoomed-in portion of the first image projected on the first image sensor array.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 10, 2019
    Assignee: InVisage Technologies, Inc.
    Inventors: Michael R. Malone, Pierre Henri Rene Della Nave, Michael Charles Brading, Jess Jan Young Lee, Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 10449542
    Abstract: Methods and devices for detecting metabolic activity of target cells in a sample. The target cells are concentrated in a nanoliter well having a microfilter. A reporter compound that exhibits a change in electrochemical state in response to metabolic activity of the target cells is introduced. Metabolic activity or viability of the target cells is detected based on a determined change in the electrochemical state of contents in the well.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: October 22, 2019
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana Olwyn Kelley, Edward Hartley Sargent, Justin David Besant
  • Publication number: 20190173031
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Application
    Filed: October 8, 2018
    Publication date: June 6, 2019
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Larissa Levina
  • Patent number: 10263041
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: April 16, 2019
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Publication number: 20190067377
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Application
    Filed: May 24, 2018
    Publication date: February 28, 2019
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Publication number: 20190046984
    Abstract: Methods and devices for detecting metabolic activity of target cells in a sample. The target cells are concentrated in a nanoliter well having a microfilter. A reporter compound that exhibits a change in electrochemical state in response to metabolic activity of the target cells is introduced. Metabolic activity or viability of the target cells is detected based on a determined change in the electrochemical state of contents in the well.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 14, 2019
    Inventors: Shana Olwyn KELLEY, Edward Hartley SARGENT, Justin David BESANT
  • Publication number: 20180315881
    Abstract: Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
    Type: Application
    Filed: June 14, 2018
    Publication date: November 1, 2018
    Inventors: Igor Constantin Ivanov, Edward Hartley Sargent, Hui Tian