Patents by Inventor Edward Hartley Sargent

Edward Hartley Sargent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10096730
    Abstract: In various embodiments, an electronic device comprises, for example, at least one photosensitive layer and at least one carrier selective layer. Under one range of biases on the device, the photosensitive layer produces a photocurrent while illuminated. Under another range of biases on the device, the photosensitive does not produce a photocurrent while illuminated. A carrier selective layer expands the range of biases over which the photosensitive layer does not produce any photocurrent while illuminated. In various embodiments, an electronic device comprises, for example, at least one photosensitive layer and at least one carrier selective layer. Under a first range of biases on the device, the photosensitive layer is configured to collect a photocurrent while illuminated. Under a second range of biases on the device, the photosensitive layer is configured to collect at least M times lower photocurrent while illuminated compared to under the first range of biases.
    Type: Grant
    Filed: January 14, 2017
    Date of Patent: October 9, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Zachary Michael Beiley, Edward Hartley Sargent
  • Patent number: 10097780
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. In one embodiment, an integrated circuit includes an image sensing array region, a first photosensor having a light-sensitive region outside of the image sensing array region, and control circuitry. The control circuitry is arranged in a first mode to read out image data from the image sensing array region, where the data provide information indicative of an image incident on the image sensing array region of the integrated circuit. The control circuitry is arranged in a second mode to read out a signal from the first photosensor indicative of intensity of light incident on the light-sensitive region of the first photosensor. Electrical power consumed by the integrated circuit during the second mode is at least ten times lower than electrical power consumed by the integrated circuit during the first mode. Additional methods and apparatuses are described.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 9, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian, Emanuele Mandelli
  • Patent number: 10073079
    Abstract: Devices and methods for capture of target particles in a flow. There is a plurality of flow rate-reducing structures in a flow chamber, each structure including a trapping surface shaped to reduce flow rate in a vicinity of the trapping surface. Reduced flow rate in the vicinity of the trapping surface is non-zero and has a magnitude lower than that of flow rate in other regions of the flow chamber. The reduced flow rate is sufficiently low for an attraction force acting on the target particles to overcome drag force on the target particles, to promote capture of particles in the vicinity of the trapping surface. The device may exhibit different sorting zones for capturing particles that experience different amounts and/or types of attraction force. The device may enable sorting of cells according to their level of display of specific protein surface markers.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: September 11, 2018
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana Olwyn Kelley, Edward Hartley Sargent, Mohamad Reza Mohamadi
  • Publication number: 20180220097
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. In one embodiment, an integrated circuit includes an image sensing array region, a first photosensor having a light-sensitive region outside of the image sensing array region, and control circuitry. The control circuitry is arranged in a first mode to read out image data from the image sensing array region, where the data provide information indicative of an image incident on the image sensing array region of the integrated circuit. The control circuitry is arranged in a second mode to read out a signal from the first photosensor indicative of intensity of light incident on the light-sensitive region of the first photosensor. Electrical power consumed by the integrated circuit during the second mode is at least ten times lower than electrical power consumed by the integrated circuit during the first mode. Additional methods and apparatuses are described.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian, Emanuele Mandelli
  • Publication number: 20180219043
    Abstract: An image sensor device includes a semiconductor substrate, including an array of pixel circuits, which define respective pixels of the device. A photosensitive layer is formed over the semiconductor substrate and configured to transfer charge to the pixel circuits in response to light incident on the photosensitive layer. An upper layer is formed over the photosensitive layer and is at least partially transparent to the light. Opaque partitions extend vertically through the upper layer in a checkerboard pattern aligned with the pixels in the array.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Publication number: 20180217082
    Abstract: Contemplated methods and devices comprise use of a charged probe and a neutralizer in the electrochemical detection of a wide range of analytes, including nucleic acids, proteins, and small molecules. In certain embodiments the neutralizer forms a complex with the probe that has a reduced charge magnitude compared to the probe itself, and is displaced from the probe when the complex is exposed to the analyte.
    Type: Application
    Filed: October 19, 2017
    Publication date: August 2, 2018
    Inventors: Shana O. Kelley, Alexandre Zaragoza, Edward Hartley Sargent, Jagotamoy Das, Kristin Cederquist
  • Publication number: 20180190689
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor is disclosed. The image sensor includes an optically sensitive material; a plurality of electrodes proximate the optically sensitive material, including at least a first electrode, a second electrode and a third electrode; and a charge store. The first electrode is coupled to the charge store, and the first electrode and the second electrode are configured to provide a bias to the optically sensitive material to direct photocarriers to the charge store. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Emanuele Mandelli, Jae Park
  • Patent number: 10008543
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 26, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J. D. Klem, Larissa Levina
  • Patent number: 9972653
    Abstract: In various example embodiments, the inventive subject matter is an image sensor and methods of formation of image sensors. In an embodiment, the image sensor comprises a semiconductor substrate and a plurality of pixel regions. Each of the pixel regions includes an optically sensitive material over the substrate with the optically sensitive material positioned to receive light. A pixel circuit for each pixel region is also included in the sensor. Each pixel circuit comprises a charge store formed on the semiconductor substrate and a read out circuit. A non-metallic contact region is between the charge store and the optically sensitive material of the respective pixel region, the charge store being in electrical communication with the optically sensitive material of the respective pixel region through the non-metallic contact region.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: May 15, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 9972652
    Abstract: In various embodiments, a photodetector includes a semiconductor substrate and a plurality of pixel regions. Each of the plurality of pixel regions comprises an optically sensitive layer over the semiconductor substrate. A pixel circuit is formed for each of the plurality of pixel regions. Each pixel circuit includes a pinned photodiode, a charge store, and a read out circuit for each of the plurality pixel regions. The optically sensitive layer is in electrical communication with a portion of a silicon diode to form the pinned photodiode. A potential difference between two electrodes in communication with the optically sensitive layer associated with a pixel region exhibits a time-dependent bias; a biasing during a first film reset period being different from a biasing during a second integration period.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: May 15, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Rajsapan Jain, Igor Constantin Ivanov, Michael R. Malone, Michael Charles Brading, Hui Tian, Pierre Henri Rene Della Nave, Jess Jan Young Lee
  • Publication number: 20180130838
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor having at least two pixel electrodes per color region, and having at least two modes is disclosed. The example image sensor includes a first, unbinned, mode; and a second, binned, mode. In the first, unbinned mode, the at least two pixel electrodes per color region are to be reset to substantially similar levels. In the second, binned mode, a first pixel electrode of the at the least two pixel electrodes is to be reset to a high voltage that results in efficient collection of photocharge, and a second pixel electrode of the at the least two pixel electrodes is to be reset to a low voltage that results in less efficient collection of photocharge. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: October 9, 2017
    Publication date: May 10, 2018
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 9941316
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor is disclosed. The image sensor includes an optically sensitive material; a plurality of electrodes proximate the optically sensitive material, including at least a first electrode, a second electrode and a third electrode; and a charge store. The first electrode is coupled to the charge store, and the first electrode and the second electrode are configured to provide a bias to the optically sensitive material to direct photocarriers to the charge store. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: April 10, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Emanuele Mandelli, Jae Park
  • Publication number: 20180076405
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Application
    Filed: August 11, 2017
    Publication date: March 15, 2018
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Larissa Levina
  • Patent number: 9898117
    Abstract: Various embodiments comprise apparatuses and methods including a light sensor. The light sensor includes a first electrode, a second electrode, a third electrode, and a light-absorbing semiconductor in electrical communication with each of the first electrode, the second electrode, and the third electrode. A light-obscuring material to substantially attenuate an incidence of light onto a portion of the light-absorbing semiconductor is disposed between the second electrode and the third electrode. An electrical bias is to be applied between the second electrode, and the first and the third electrodes and a current flowing through the second electrode is related to the light incident on the light sensor. Additional methods and apparatuses are described.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: February 20, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jess Jan Young Lee, Hui Tian
  • Publication number: 20180033827
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 1, 2018
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Patent number: 9825074
    Abstract: Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor having at least two pixel electrodes per color region, and having at least two modes is disclosed. The example image sensor includes a first, unbinned, mode; and a second, binned, mode. In the first, unbinned mode, the at least two pixel electrodes per color region are to be reset to substantially similar levels. In the second, binned mode, a first pixel electrode of the at the least two pixel electrodes is to be reset to a high voltage that results in efficient collection of photocharge, and a second pixel electrode of the at the least two pixel electrodes is to be reset to a low voltage that results in less efficient collection of photocharge. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: November 21, 2017
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Hui Tian, Igor Constantin Ivanov, Edward Hartley Sargent
  • Patent number: 9804120
    Abstract: Contemplated methods and devices comprise performing electrochemical sample analysis in a multiplexed electrochemical detector having reduced electrical cross-talk. The electrochemical detector includes electrodes that share a common lead from a plurality of leads. The sample, which may be a liquid sample, is introduced into one or more sample wells and a signal is applied to at least one of the electrodes. A response signal is measured while simultaneously applying a substantially fixed potential to each of a remainder of the plurality of leads.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 31, 2017
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana O. Kelley, Edward Hartley Sargent, Brian Lam
  • Patent number: 9806131
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: October 31, 2017
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J. D. Klem, Larissa Levina
  • Publication number: 20170301808
    Abstract: Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 19, 2017
    Inventors: Igor Constantin Ivanov, Edward Hartley Sargent, Hui Tian
  • Publication number: 20170263686
    Abstract: Various embodiments include an image sensor providing global electronic shutter having an integrated circuit, a first charge-extracting layer, an optically sensitive layer, and a second hole-extracting layer. In a first mode (the ‘on’ mode), electrons are extracted via the first charge-extracting layer. In a second mode (the ‘off’ mode), the extraction of holes is prevented by the first charge-extracting layer. Other embodiments are disclosed.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Zachary Michael Beiley, Edward Hartley Sargent