Patents by Inventor Eric Miller

Eric Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11715950
    Abstract: Apparatus and associated methods relate to automatically load matching, in time, energy physically generated and transmitted to a consumption location across at least one tracking and processing infrastructure. In an illustrative example, a load pool (LP) may be created based on energy consumed at a physical location at one or more selected time periods. A generation pool (GP) may, for example, be created based on energy generated and physically available for consumption at the physical location during the time periods. Associations may be created, for example, between measurements in the GP of energy generated and transmitted and measurements in the LP of energy consumed. The associations may be created as a function of predetermined privileges associated with the consumption location and generation locations and/or physical transmission links corresponding to the GP during the time periods. Various embodiments may advantageously determine environmental impact based on location and time-based load matching.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: August 1, 2023
    Assignee: ClearTrace Technologies, Inc.
    Inventors: Eric Miller, Neil Zumwalde, Robert Astrich, Brian Lakamp, Evan Caron, Zachary Livingston, Benjamin Grimes, Troy Martin
  • Publication number: 20230238323
    Abstract: Interconnect structures including signal lines, power lines and ground lines are configured for improvements in routing and scaling. Vertical stacking of the relatively wide power and ground lines allows for additional signal tracks in the same footprint of a standard cell or other electronic device. Alternatively, vertical stacking of the signal lines allows an increased number of signal tracks. Such interconnect structures are formed during back-end-of-line processing using subtractive or damascene interconnect integration techniques.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 27, 2023
    Inventors: Christopher J. Penny, Nicholas Anthony Lanzillo, Albert Chu, Ruilong Xie, Lawrence A. Clevenger, DANIEL JAMES DECHENE, Eric Miller, PRASAD BHOSALE
  • Patent number: 11710768
    Abstract: An apparatus including a substrate and a first nanosheet device located on the substrate. A second nanosheet device is located on the substrate, where the second nanosheet device is adjacent to the first nanosheet device. At least one first gate located on the first nanosheet device and the at least one first gate has a first width. At least one second gate located on the second nanosheet device and the at least one second gate has a second width. The first width and the second width are substantially the same. A diffusion break located between the first nanosheet device and the second nanosheet device. The diffusion break prevents the first nanosheet device from contacting the second nanosheet device, and the diffusion break has a third width. The third width is larger than the first width and the second width.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: July 25, 2023
    Assignee: International Business Machines Corporation
    Inventors: Eric Miller, Indira Seshadri, Andrew M. Greene, Julien Frougier, Veeraraghavan S. Basker
  • Patent number: 11695059
    Abstract: A technique relates to a semiconductor device. A first epitaxial material is formed under a bottom surface of a set of fins, the first epitaxial material being under fin channel regions of the set of fins. A second epitaxial material is formed adjacent to the first epitaxial material and remote from the fin channel regions, a combination of the first epitaxial material and the second epitaxial material forming a bottom source or drain (source/drain) layer. A top source/drain layer is formed on an upper portion of the set of fins, gate material being disposed around the set of fins between the top source/drain layer and the bottom source/drain layer.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: July 4, 2023
    Assignee: International Business Machines Corporation
    Inventors: Tao Li, Indira Seshadri, Nelson Felix, Eric Miller
  • Publication number: 20230187510
    Abstract: Embodiments disclosed herein include a semiconductor structure having a first lower device and a second lower device laterally adjacent to the first lower device at a lower level of the semiconductor structure, a first upper device and a second upper device laterally adjacent to the first upper device at an upper level of the semiconductor structure. The upper level may be vertically above the lower level. The semiconductor structure may also include an angled via electrically connecting the lower device and the first upper device. The angled via may include an angled surface laterally between the first upper device and the second upper device that is angled toward the first upper device relative to a vertical axis.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Inventors: Ruilong Xie, Oleg Gluschenkov, Eric Miller, Yasir Sulehria
  • Publication number: 20230187549
    Abstract: A semiconductor device having a self-aligned contact gate dielectric cap, or “SAC cap” over the gate stack and spacer. A SAC cap ear exists over the sidewall of a top portion of the spacer at a location where no S/D contact is formed. A method of forming the semiconductor device comprises: (i) forming gate stack; (ii) recessing ILD to create topography of the gate stack; (iii) forming selective gate cap deposition over the gate stack; and/or (iv) forming self-aligned contact with respect to the selective gate cap.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Inventors: Ruilong Xie, CHANRO PARK, Julien Frougier, Kangguo Cheng, Eric Miller, Ekmini Anuja De Silva
  • Patent number: 11673766
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate elevator analytics and/or elevator optimization components are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a prediction component that can predict a current destination of an elevator passenger based on historical elevator usage data of the elevator passenger. The computer executable components can further comprise an assignment component that can assign the elevator passenger to an elevator based on the current destination.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 13, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gauri Karve, Tara Astigarraga, Eric Miller, Kangguo Cheng, Fee Li Lie, Sean Teehan, Marc Bergendahl
  • Publication number: 20230178618
    Abstract: A gate-all-around device includes a plurality of channel layers vertically stacked over a substrate, an inner spacer located between each of the plurality of channel layers, source/drain regions in contact with opposite ends of a first portion of the plurality of channel layers, and a first dielectric layer on opposite ends of a second portion of the plurality of channel layers located in a spacer region that is adjacent to the source/drain regions. A width of the first dielectric layer and the second portion of the plurality of channel layers is equal to a width of the inner spacer located between each of the plurality of channel layers.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 8, 2023
    Inventors: Maruf Amin Bhuiyan, Julien Frougier, Ruilong Xie, Eric Miller
  • Publication number: 20230146823
    Abstract: A handheld laser-based vehicle speed measurement device incorporating on-board data storage with GPS, compass, excess panning detection, and voice recognition technology, as well as, recording minimum and maximum speeds of a plurality of vehicles along a roadway and calculating the 85th percentile speed.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 11, 2023
    Applicants: Laser Technology, Inc., Kama-Tech (HK) Limited
    Inventors: William E. Rett, Vinny A. Alvino, Eric A. Miller, Jeremy G. Dunne, Neil T. Heeke
  • Patent number: 11646235
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for vertical tunneling field effect transistors (VFETs) having a dual liner bottom spacer. In a non-limiting embodiment of the invention, a first liner is formed on a top surface of a source or drain (S/D) region and sidewalls of a semiconductor fin. Portions of a spacer are removed to expose a first region and a second region of the first liner. The first region of the first liner is directly on the S/D region and the second region is over the semiconductor fin. A second liner is formed on the first liner. A first portion of the second liner is formed by selectively depositing dielectric material on the exposed first region and exposed second region of the first liner. The first liner and the second liner collectively define the dual liner bottom spacer.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: May 9, 2023
    Assignee: International Business Machines Corporation
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, Sean Teehan, John Sporre
  • Patent number: 11646358
    Abstract: A method is presented for forming a self-aligned middle-of-the-line (MOL) contact. The method includes forming a fin structure over a substrate, depositing and etching a first set of dielectric layers over the fin structure, etching the fin structure to form a sacrificial fin and a plurality of active fins, depositing a work function metal layer over the plurality of active fins, depositing an inter-layer dielectric (ILD) and a second set of dielectric layers. The method further includes etching the second set of dielectric layers and the ILD to form a first, via portion and to expose a top surface of the sacrificial fin, removing the sacrificial fin to form a second via portion, and filling the first and second via portions with a conductive material to form the MOL contact in the first via portion and a contact landing in the second via portion.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: May 9, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Mignot, Indira Seshadri, Su Chen Fan, Christopher J. Waskiewicz, Eric Miller
  • Publication number: 20230139929
    Abstract: A semiconductor structure is provided in which a via to buried power rail (VBPR) contact structure is present that has a via portion contacting a buried power rail and a non-via portion contacting a source/drain region of a first functional gate structure present in a first device region. A dielectric spacer structure including a base dielectric spacer and a replacement dielectric spacer is located between the VPBR contact structure and the first functional gate structure. The replacement dielectric spacer is composed of a gate cut trench dielectric material that is also present in a gate cut trench that is located between the first functional gate structure present in the first device region, and a second functional gate structure that is present in a second device region. The replacement dielectric spacer replaces a damaged region of a dielectric spacer that is originally present during VBPR formation.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 4, 2023
    Inventors: Ruilong Xie, Stuart Sieg, Kevin Shawn Petrarca, Eric Miller
  • Publication number: 20230112832
    Abstract: The disclosure relates to chemokine CXCR4 receptor modulators and uses related thereto. The receptor modulators can be formulated to form pharmaceutical compositions comprising the disclosed compounds or pharmaceutically acceptable salts or prodrugs thereof. The compositions may be used for managing CXCR4 related conditions, typically prevention or treatment of viral infections abnormal cellular proliferation, retinal degeneration, inflammatory diseases, or as an immunostimulant or immunosuppressant or for managing cancer and may be administered with another active ingredient such as an antiviral agent or chemotherapeutic agent.
    Type: Application
    Filed: October 25, 2022
    Publication date: April 13, 2023
    Inventors: Dennis C. Liotta, Edgars Jecs, Robert James Wilson, Huy Hoang Nguyen, Michelle Bora Kim, Lawrence Wilson, Eric Miller, Yesim Altas Tahirovic, Valarie Truax, Thomas Kaiser
  • Publication number: 20230095508
    Abstract: Embodiments disclosed herein include a semiconductor structure for reducing contact to contact shorting. The semiconductor structure may include a gate cut region with a liner and a dielectric core confined within a first lateral side of the liner and a second lateral side of the liner. The semiconductor structure may also include a first source/drain (S/D) contact overlapping the first lateral side and the dielectric core. The first S/D may include a line-end that contacts the second lateral side of the liner.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Ruilong Xie, Indira Seshadri, Eric Miller, Kangguo Cheng
  • Patent number: 11615992
    Abstract: A method of forming vertical transport field effect transistor (VTFET) devices is provided. The method includes forming a plurality of vertical fins on an upper insulating layer of a dual insulator layer semiconductor-on-insulator (SeOI) substrate, and forming two masking blocks on the plurality of vertical fins, wherein a portion of a protective layer and a fin template on each of the plurality of vertical fins is exposed between the two masking blocks. The method further includes removing a portion of the upper insulating layer between the two masking blocks to form a first cavity beneath the plurality of vertical fins, and forming a first bottom source/drain in the first cavity below the plurality of vertical fins. The method further includes replacing the two masking blocks with a masking layer patterned to have two mask openings above portions of the upper insulating layer adjacent to the first bottom source/drain.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: March 28, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, John Sporre, Gauri Karve, Fee Li Lie
  • Patent number: 11605717
    Abstract: A semiconductor structure and a method of making the same includes a first recessed region in a semiconductor structure, the first recessed region defining a first opening with a first positive tapering profile, as at least part of the first positive tapering profile, widening the first opening in a direction towards a top source/drain region of the semiconductor structure at a first tapering angle, and a top source/drain contact within the first opening, the top source/drain contact surrounding a surface of the top source/drain region. The semiconductor structure further includes a protective liner located at an interface between a bottom portion of the top source/drain region, a top spacer adjacent to the top source/drain region and a dielectric material between two consecutive top source/drain regions, the protective liner protects the top source/drain regions during contact patterning.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 14, 2023
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Eric Miller, Jeffrey C. Shearer, Su Chen Fan, Heng Wu
  • Publication number: 20230065078
    Abstract: Interconnect structures including super vias are formed during back-end-of-line processing using sacrificial placeholders to protect the bottom portions of the super vias while upper portions of the super vias are formed. The sacrificial placeholders are removed and replaced by metal conductors that fill the bottom and upper portions of the super vias.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Inventors: Yann Mignot, Christopher J. Waskiewicz, Eric Miller, CHANRO CHANRO PARK
  • Patent number: 11590641
    Abstract: A staple gun and a method of using the same. A stapling mechanism in the housing is activated to deliver a staple through an aperture in a housing wall and drive the staple into a surface around a stack of one or more electric cables. The gun includes a reciprocating cable guide for centering the gun on the stack of cables and closing a safety switch to permit the gun's trigger to be activated. A spacer extending outwardly from the housing wall rests on the upper surface of the cable stack. The spacer and a bumper that engages a hammer of the stapling mechanism provide for automatic depth adjustment when driving the staple into the surface. A reciprocating cable guard extending outwardly from the housing wall is positioned between the stack of cables and the staple to aid in preventing the staple from piercing the cable.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: February 28, 2023
    Assignee: BRAHMA INDUSTRIES LLC
    Inventors: Mark Ferris, Eric A. Miller, Jr., John D. Fiegener, Marcus R. Hanna, Ryan Thompson, William P. Liteplo
  • Patent number: 11587757
    Abstract: X-ray transparent insulation can be sandwiched between an x-ray window and a ground plate. The x-ray transparent insulation can include aluminum nitride, boron nitride, or polyetherimide. The x-ray transparent insulation can include a curved side. The x-ray transparent insulation can be transparent to x-rays and resistant to x-ray damage, and can have high thermal conductivity. An x-ray window can have high thermal conductivity, high electrical conductivity, high melting point, low cost, and matched coefficient of thermal conductivity with the anode. The x-ray window can be made of tungsten. For consistent x-ray spot size and location, a focusing plate and a filament can be attached to a cathode with an open channel of the focusing plate aligned with a longitudinal dimension of the filament. Tabs of the focusing plate bordering the open channel can be bent to align with a location of the filament.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: February 21, 2023
    Assignee: Moxtek, Inc.
    Inventors: Todd S. Parker, Eric Miller
  • Publication number: 20230051674
    Abstract: A method for forming a stacked transistor includes forming a sacrificial cap over a first interconnect of a lower level transistor. The method further includes forming an upper level transistor above the sacrificial cap. The method further includes removing the sacrificial cap to form an opening such that the opening is delimited by the upper level transistor. The method further includes forming a second interconnect in the opening such that the second interconnect is in direct contact with the first interconnect.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Heng Wu, Ruilong Xie, Chen Zhang, Eric Miller