Patents by Inventor Erik P. Machnicki

Erik P. Machnicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210341317
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Publication number: 20210333132
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal, Michael F. Culbert
  • Patent number: 11079261
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: August 3, 2021
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 10877688
    Abstract: In some embodiments, a system includes a memory system, a real-time computing device, and a controller. The real-time computing device stores data within a local buffer having a corresponding storage threshold, where the data satisfies the storage threshold, and where the storage threshold is based on a latency of the memory system and an expected rate of utilization of the data of the local buffer. The controller detects that the memory system should perform an operation, where the memory system is unavailable to the real-time computing device during the operation. In response to detecting that an amount of time for the operation exceeds an amount of time corresponding to the storage threshold, the controller overrides the storage threshold. The controller may override the storage threshold by modifying the storage threshold and by overriding a default priority for access requests of the real-time computing device to the memory system.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: December 29, 2020
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Peter F. Holland, Erik P. Machnicki, Robert E. Jeter, Rakesh L. Notani, Neeraj Parik, Marc A. Schaub
  • Publication number: 20200149932
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 14, 2020
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 10488230
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 10261894
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 16, 2019
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Publication number: 20180313673
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: June 26, 2018
    Publication date: November 1, 2018
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 10055369
    Abstract: Systems, apparatuses, and methods for coalescing interrupts temporally for later processing are described. An interrupt controller in a computing system maintains a timer for tracking an amount of time remaining after receiving an interrupt before a processor is awakened to service the interrupt. For a received interrupt with a latency tolerance greater than a threshold, the interrupt controller compares a value currently stored in the timer and the latency tolerance selected based on class. The smaller value is retained in the timer. When the timer expires, the interrupt controller sends wakeup indications to one or more processors and indications of the waiting interrupts.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: August 21, 2018
    Assignee: Apple Inc.
    Inventors: Charles E. Tucker, Erik P. Machnicki, Fan Wu, John H. Kelm
  • Patent number: 10048720
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 14, 2018
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 10031000
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: July 24, 2018
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 9959124
    Abstract: In an embodiment, a system includes a functional unit that remains powered when the remainder of the system is powered off. The functional unit may, in response to a transition from a first power state to a second power state, retrieve configuration information from a read-only memory. In some embodiments, may be configured to store at least a portion of the configured information in a secure portion of a memory included in the functional unit and then lock the secure portion of the memory. The functional unit may then complete the transition to the second power state.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: May 1, 2018
    Assignee: Apple Inc.
    Inventors: Gilbert H. Herbeck, Manu Gulati, Erik P. Machnicki, Timothy R. Paaske
  • Publication number: 20180107240
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 19, 2018
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Publication number: 20180032281
    Abstract: In some embodiments, a system includes a memory system, a real-time computing device, and a controller. The real-time computing device stores data within a local buffer having a corresponding storage threshold, where the data satisfies the storage threshold, and where the storage threshold is based on a latency of the memory system and an expected rate of utilization of the data of the local buffer. The controller detects that the memory system should perform an operation, where the memory system is unavailable to the real-time computing device during the operation. In response to detecting that an amount of time for the operation exceeds an amount of time corresponding to the storage threshold, the controller overrides the storage threshold. The controller may override the storage threshold by modifying the storage threshold and by overriding a default priority for access requests of the real-time computing device to the memory system.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 1, 2018
    Inventors: Manu Gulati, Peter F. Holland, Erik P. Machnicki, Robert E. Jeter, Rakesh L. Notani, Neeraj Parik, Marc A. Schaub
  • Patent number: 9864399
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: January 9, 2018
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 9823730
    Abstract: A method and apparatus for power management of cache duplicate tags is disclosed. An IC includes a cache, a coherence circuit, and a duplicate tags memory that may store duplicates of the tags stored in the cache. The cache includes a number of ways that are separately and independently power controllable. The duplicate tags memory may be similarly organized, with portions that are power controllable separately and independently of others. The coherence circuit is also power controllable, and may be placed into a sleep mode when idle. The IC also includes a power management circuit. During operation, the cache may change power states and provide a corresponding indication to the power management circuit. Responsive to the indication, the power management circuit may awaken the coherence circuit if in a sleep state. The coherence circuit may then power manage the duplicate tags in accordance with the change in power state.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: November 21, 2017
    Assignee: Apple Inc.
    Inventors: Muditha Kanchana, Erik P. Machnicki
  • Patent number: 9811142
    Abstract: Embodiments of a method that allow the adjustment of performance settings of a computing system are disclosed. One or more functional units may include multiple monitor circuits, each of which may be configured to monitor a given operational parameter of a corresponding functional unit. Upon detection of an event related to a monitored operational parameter, a monitor circuit may generate an interrupt. In response to the interrupt a processor may adjust one or more performance settings of the computing system.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: November 7, 2017
    Assignee: Apple Inc.
    Inventors: Cyril de la Cropte de Chanterac, Manu Gulati, Erik P. Machnicki, Keith Cox, Timothy J. Millet
  • Publication number: 20170177256
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Publication number: 20170168520
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 9659616
    Abstract: In an embodiment, an apparatus may include a plurality of circuit blocks, a plurality of fuses and circuitry. The circuitry may be configured to determine a state for each of the plurality of fuses in response to transitioning from an off mode to a first operating mode. A first number of circuit blocks may be enabled in the first operating mode. The circuitry may also be configured to initialize the first number of circuit blocks dependent upon the states of one or more of the plurality of fuses and to transition from the first operating mode to a second operating mode. A second number of circuit blocks, less than the first number, may be enabled in the second operating mode. The circuitry may also be configured to store data representing the states of a subset of the plurality of fuses into a first memory enabled in the second operating mode.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: May 23, 2017
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Erik P. Machnicki, Gilbert H. Herbeck