Patents by Inventor Erik P. Machnicki

Erik P. Machnicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9658634
    Abstract: An under voltage detection circuit and method of operating an IC including the same is disclosed. In one embodiment, an IC includes an under voltage protection circuit having first and second comparators configured to compare a supply voltage to first and second voltage thresholds, respectively, with the second voltage threshold being greater than the first. A logic circuit is coupled to receive signals from the first and second comparators. During operation in a high performance state by a corresponding functional circuit, the logic circuit is configured to cause assertion of a throttling signal responsive to an indication that the supply voltage has fallen below the first threshold. A clock signal provided to the functional circuit may be throttled responsive to the indication. If the supply voltage subsequently rises to a level above the second threshold, the throttling signal may be de-asserted.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Eric G. Smith, Erik P. Machnicki, Jung Wook Cho, Khaled M. Alashmouny, Kiran B. Kattel, Vijay M. Bettada, Bo Yang, Wenlong Wei
  • Patent number: 9645630
    Abstract: Techniques are disclosed relating to power management within an integrated circuits. In one embodiment an apparatus is disclosed that includes a circuit and a power management unit. The power management unit is configured to provide, based on a programmable setting, an indication of whether an attempted communication to the circuit is permitted to cause the circuit to exit from a power-managed state. In some embodiments, the apparatus includes a fabric configured to transmit the attempted communication to the circuit from a device. In such an embodiment, the circuit is configured to exit the power-managed state in response to receiving the attempted communication. The fabric is configured to determine whether to transmit the attempted communication based on the indication provided by the power management unit.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 9, 2017
    Assignee: Apple Inc.
    Inventors: Shane J. Keil, Erik P. Machnicki, Josh P. de Cesare
  • Patent number: 9639143
    Abstract: A method and apparatus for interfacing dynamic hardware power managed blocks and software power managed blocks is disclosed. In one embodiment, and integrated circuit (IC) may include a number of power manageable functional units. The functional units maybe power managed through hardware, software, or both. Each of the functional units may be coupled to at least one other functional unit through a direct communications link. A link state machine may monitor each of the communications links between functional units, and may broadcast indications of link availability to the functional units coupled to the link. Responsive to a software request to shut down a given link, or a hardware initiated shutdown of one of the functional units coupled to the link, the link state machine may broadcast and indication that the link is unavailable.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: May 2, 2017
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Gurjeet S. Saund, Munetoshi Fukami, Shane J. Keil, Chaitanya Kosaraju, Erdem Guleyupoglu, Jason M. Kassoff, Kevin C. Wong
  • Patent number: 9619377
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 11, 2017
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Publication number: 20170010655
    Abstract: A method and apparatus for power management of cache duplicate tags is disclosed. An IC includes a cache, a coherence circuit, and a duplicate tags memory that may store duplicates of the tags stored in the cache. The cache includes a number of ways that are separately and independently power controllable. The duplicate tags memory may be similarly organized, with portions that are power controllable separately and independently of others. The coherence circuit is also power controllable, and may be placed into a sleep mode when idle. The IC also includes a power management circuit. During operation, the cache may change power states and provide a corresponding indication to the power management circuit. Responsive to the indication, the power management circuit may awaken the coherence circuit if in a sleep state. The coherence circuit may then power manage the duplicate tags in accordance with the change in power state.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 12, 2017
    Inventors: Muditha Kanchana, Erik P. Machnicki
  • Patent number: 9529405
    Abstract: A system and method for managing idleness of functional units in an IC is disclosed. An IC includes a subsystem having a number of functional units and an idle aggregation unit. When a particular functional unit determines that it is idle, it may assert an idle indication to the idle aggregation unit. When the respective idle indications are concurrently asserted for all of the functional units, the idle aggregation unit may assert and provide respective idle request signals to each of the functional units. Responsive to receiving an idle request unit, a given functional unit may provide an acknowledgement signal to the idle aggregation unit if no transactions are incoming. If all functional units have concurrently asserted their respective acknowledgement signals, the idle aggregation unit may provide an indication of the same to a clock gating unit, which may then gate the clock signal(s) received by the functional units.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: December 27, 2016
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Gilbert H. Herbeck, Shu-Yi Yu, Sebastian Skalberg
  • Patent number: 9465740
    Abstract: An apparatus for processing coherency transactions in a computing system is disclosed. The apparatus may include a request queue circuit, a duplicate tag circuit, and a memory interface unit. The request queue circuit may be configured to generate a speculative read request dependent upon a received read transaction. The duplicate tag circuit may be configured to store copies of tag from one or more cache memories, and to generate a kill message in response to a determination that data requested in the received read transaction is stored in a cache memory. The memory interface unit may be configured to store the generated speculative read request dependent upon a stall condition. The stored speculative read request may be sent to a memory controller dependent upon the stall condition. The memory interface unit may be further configured to delete the speculative read request in response to the kill message.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: October 11, 2016
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Harshavardhan Kaushikkar, Shinye Shiu
  • Publication number: 20160291625
    Abstract: An under voltage detection circuit and method of operating an IC including the same is disclosed. In one embodiment, an IC includes an under voltage protection circuit having first and second comparators configured to compare a supply voltage to first and second voltage thresholds, respectively, with the second voltage threshold being greater than the first. A logic circuit is coupled to receive signals from the first and second comparators. During operation in a high performance state by a corresponding functional circuit, the logic circuit is configured to cause assertion of a throttling signal responsive to an indication that the supply voltage has fallen below the first threshold. A clock signal provided to the functional circuit may be throttled responsive to the indication. If the supply voltage subsequently rises to a level above the second threshold, the throttling signal may be de-asserted.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 6, 2016
    Inventors: Brijesh Tripathi, Eric G. Smith, Erik P. Machnicki, Jung Wook Cho, Khaled M. Alashmouny, Kiran B. Kattel, Vijay M. Bettada, Bo Yang, Wenlong Wei
  • Patent number: 9413353
    Abstract: A method and apparatus for thermal voltage margin recovery is disclosed. In one embodiment, an integrated circuit (IC) includes first and second temperature sensors at first and second locations of the IC, respectively. The IC further includes a power management circuit coupled to receive temperature readings from the first and second temperature sensors. Based on received temperature readings, the power management circuit may determine a voltage offset value. The power management circuit may then reduce the operating voltage of the IC by the voltage offset value.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: August 9, 2016
    Assignee: Apple Inc.
    Inventor: Erik P Machnicki
  • Patent number: 9354658
    Abstract: An apparatus for synchronizing a signal from a first clock domain into a second clock domain is disclosed. The apparatus may include circuitry, a synchronization circuit, and a clock gate circuit. The circuitry may de-assert a first enable signal dependent upon a first clock signal. The synchronization circuit may generate a second enable signal synchronized to a second clock signal and may de-assert the second enable signal in response to de-asserting the first enable signal. The clock gate circuit may generate a third clock signal dependent upon the second clock signal, and may disable the third clock signal responsive to de-asserting the second enable signal. The circuitry may further disable the second clock signal in response to determining a predetermined period of time has elapsed since de-asserting the first enable signal.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 31, 2016
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Shane J. Keil
  • Patent number: 9317102
    Abstract: Techniques are disclosed relating to reducing power consumption in integrated circuits. In one embodiment, an apparatus includes a cache having a set of tag structures and a power management unit. The power management unit is configured to power down a duplicate set of tag structures in responsive to the cache being powered down. In one embodiment, the cache is configured to provide, to the power management unit, an indication of whether the cache includes valid data. In such an embodiment, the power management unit is configured to power down the cache in response to the cache indicating that the cache does not include valid data. In some embodiments, the duplicate set of tag structures is located within a coherence point configured to maintain coherency between the cache and a memory.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Muditha Kanchana, Gurjeet S. Saund, Harshavardhan Kaushikkar, Erik P. Machnicki, Seye Ewedemi
  • Patent number: 9310783
    Abstract: A method and apparatus for dynamic clock and power gating and decentralized wakeups is disclosed. In one embodiment, an integrated circuit (IC) includes power-manageable functional units and a power management unit. Each of the power manageable functional units is configured to convey a request to enter a low power state to the power management unit. The power management unit may respond by causing a requesting functional unit to enter the low power state. Should another functional unit initiate a request to communicate with a functional unit currently in the low power state, it may send a request to that functional unit. The receiving functional unit may respond to the request by exiting the low power state and resuming operation in the active state.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 12, 2016
    Assignee: Apple Inc.
    Inventors: Erik P Machnicki, Gurjeet S Saund, Munetoshi Fukami, Shane J Keil
  • Publication number: 20160091954
    Abstract: Embodiments of a method that allow the adjustment of performance settings of a computing system are disclosed. One or more functional units may include multiple monitor circuits, each of which may be configured to monitor a given operational parameter of a corresponding functional unit. Upon detection of an event related to a monitored operational parameter, a monitor circuit may generate an interrupt. In response to the interrupt a processor may adjust one or more performance settings of the computing system.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Cyril de la Cropte de Chanterac, Manu Gulati, Erik P. Machnicki, Keith Cox, Timothy J. Millet
  • Publication number: 20160048191
    Abstract: A system and method for managing idleness of functional units in an IC is disclosed. An IC includes a subsystem having a number of functional units and an idle aggregation unit. When a particular functional unit determines that it is idle, it may assert an idle indication to the idle aggregation unit. When the respective idle indications are concurrently asserted for all of the functional units, the idle aggregation unit may assert and provide respective idle request signals to each of the functional units. Responsive to receiving an idle request unit, a given functional unit may provide an acknowledgement signal to the idle aggregation unit if no transactions are incoming. If all functional units have concurrently asserted their respective acknowledgement signals, the idle aggregation unit may provide an indication of the same to a clock gating unit, which may then gate the clock signal(s) received by the functional units.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 18, 2016
    Inventors: Erik P. Machnicki, Gilbert H. Herbeck, Shu-Yi Yu, Sebastian Skalberg
  • Publication number: 20160049207
    Abstract: In an embodiment, an apparatus may include a plurality of circuit blocks, a plurality of fuses and circuitry. The circuitry may be configured to determine a state for each of the plurality of fuses in response to transitioning from an off mode to a first operating mode. A first number of circuit blocks may be enabled in the first operating mode. The circuitry may also be configured to initialize the first number of circuit blocks dependent upon the states of one or more of the plurality of fuses and to transition from the first operating mode to a second operating mode. A second number of circuit blocks, less than the first number, may be enabled in the second operating mode. The circuitry may also be configured to store data representing the states of a subset of the plurality of fuses into a first memory enabled in the second operating mode.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 18, 2016
    Inventors: Manu Gulati, Erik P. Machnicki, Gilbert H. Herbeck
  • Patent number: 9262353
    Abstract: In one embodiment, an interrupt controller may implement an interrupt distribution scheme for distributing interrupts among multiple processors. The scheme may take into account various processor state in determining which processor should receive a given interrupt. For example, the processor state may include whether or not the processor is in a sleep state, whether or not interrupts are enabled, whether or not the processor has responded to previous interrupts, etc. The interrupt controller may implement timeout mechanisms to detect that an interrupt is being delayed (e.g. after being offered to a processor). The interrupt may be re-evaluated at the expiration of a timeout, and potentially offered to another processor. The interrupt controller may be configured to automatically, and atomically, mask an interrupt in response to delivering an interrupt vector for the interrupt to a responding processor.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: February 16, 2016
    Assignee: Apple Inc.
    Inventors: Josh P. de Cesare, Ruchi Wadhawan, Erik P. Machnicki, Mark D. Hayter
  • Publication number: 20160026234
    Abstract: A method and apparatus for interfacing dynamic hardware power managed blocks and software power managed blocks is disclosed. In one embodiment, and integrated circuit (IC) may include a number of power manageable functional units. The functional units maybe power managed through hardware, software, or both. Each of the functional units may be coupled to at least one other functional unit through a direct communications link. A link state machine may monitor each of the communications links between functional units, and may broadcast indications of link availability to the functional units coupled to the link. Responsive to a software request to shut down a given link, or a hardware initiated shutdown of one of the functional units coupled to the link, the link state machine may broadcast and indication that the link is unavailable.
    Type: Application
    Filed: October 7, 2015
    Publication date: January 28, 2016
    Inventors: Erik P. Machnicki, Gurjeet S. Saund, Munetoshi Fukami, Shane J. Keil, Chaitanya Kosaraju, Erdem Guleyupoglu, Jason M. Kassoff, Kevin C. Wong
  • Publication number: 20150347287
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: August 13, 2014
    Publication date: December 3, 2015
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. De Cesare, Anand Dalal
  • Publication number: 20150346001
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: August 13, 2014
    Publication date: December 3, 2015
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 9201821
    Abstract: A system and method for maintaining accurate interrupt timestamps. A semiconductor chip includes an interrupt controller (IC) with an interface to multiple sources of interrupts. In response to receiving an interrupt, the IC copies and records the value stored in a main time base counter used for maintaining a global elapsed time. The IC sends an indication of the interrupt to a corresponding processor. Either an interrupt service routine (ISR) or a device driver requests a timestamp associated with the interrupt. Rather than send a request to the operating system to obtain a current value stored in the main time base counter, the processor requests the recorded timestamp from the IC. The IC identifies the stored timestamp associated with the interrupt and returns it to the processor.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 1, 2015
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Josh P. de Cesare, Manu Gulati