Patents by Inventor Fabio Pellizzer

Fabio Pellizzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11763886
    Abstract: Methods, systems, and devices related to techniques to access a self-selecting memory device are described. A self-selecting memory cell may store one or more bits of data represented by different threshold voltages of the self-selecting memory cell. A programming pulse may be varied to establish the different threshold voltages by modifying one or more time durations during which a fixed level of voltage or current is maintained across the self-selecting memory cell. The self-selecting memory cell may include a chalcogenide alloy. A non-uniform distribution of an element in the chalcogenide alloy may determine a particular threshold voltage of the self-selecting memory cell. The shape of the programming pulse may be configured to modify a distribution of the element in the chalcogenide alloy based on a desired logic state of the self-selecting memory cell.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Andrea Redaelli, Agostino Pirovano, Fabio Pellizzer, Mario Allegra, Paolo Fantini
  • Publication number: 20230268005
    Abstract: Systems, methods and apparatus to determine, in response to a command to write data into a set of memory cells, a programming mode of a set of memory cell to optimize performance in retrieving the data back from the set of memory cells. For example, based on usages of a memory region containing the memory cell set, a predictive model can be used to identify a combination of an amount of redundant information to be stored into the memory cells in the set and a programming mode of the memory cells to store the redundant information. Increasing the amount of redundant information can increase error recovery capability but increase bit error rate and/or increase time to read. The predictive model is trained to predict the combination to optimize read performance.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11735261
    Abstract: Methods, systems, and devices for programming enhancement in memory cells are described. An asymmetrically shaped memory cell may enhance ion crowding at or near a particular electrode, which may be leveraged for accurately reading a stored value of the memory cell. Programming the memory cell may cause elements within the cell to separate, resulting in ion migration towards a particular electrode. The migration may depend on the polarity of the cell and may create a high resistivity region and low resistivity region within the cell. The memory cell may be sensed by applying a voltage across the cell. The resulting current may then encounter the high resistivity region and low resistivity region, and the orientation of the regions may be representative of a first or a second logic state of the cell.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: August 22, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano, Innocenzo Tortorelli, Fabio Pellizzer
  • Publication number: 20230260581
    Abstract: Methods, systems, and devices for techniques for operating a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Agostino Pirovano, Fabio Pellizzer, Innocenzo Tortorelli
  • Publication number: 20230262995
    Abstract: Methods, systems, and devices for a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Agostino Pirovano, Fabio Pellizzer
  • Patent number: 11729999
    Abstract: Methods, systems, and devices for a capacitive pillar architecture for a memory array are described. An access line within a memory array may be, include, or be coupled with a pillar. The pillar may include an exterior electrode, such as a hollow exterior electrode, surrounding an inner dielectric material that may further surround an interior, core electrode. The interior electrode may be maintained at a voltage level during at least a portion of an access operation for a memory cell coupled with the pillar. Such a pillar structure may increase a capacitance of the pillar, for example, based on a capacitive coupling between the interior and exterior electrodes. The increased capacitance may provide benefits associated with operating the memory array, such as increased memory cell programming speed, programming reliability, and read disturb immunity.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: August 15, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Fabio Pellizzer
  • Patent number: 11721394
    Abstract: Methods, systems, and devices for polarity-written cell architectures for a memory device are described. In an example, the described architectures may include memory cells that each include or are otherwise associated with a material configured to store one of a set of logic states based at least in part on a polarity of a write voltage applied to the material. Each of the memory cells may also include a cell selection component configured to selectively couple the material with an access line. In some examples, the material may include a chalcogenide, and the material may be configured to store each of the set of logic states in an amorphous state of the chalcogenide. In various examples, different logic states may be associated with different compositional distributions of the material of a respective memory cell, different threshold characteristics of the material of a respective memory cell, or other characteristics.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: August 8, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Agostino Pirovano, Fabio Pellizzer
  • Publication number: 20230238050
    Abstract: Methods, systems, and devices for a decoding architecture for memory devices are described. Word line plates of a memory array may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. Two word line plates in a same plane may be activated via a shared electrode. Memory cells coupled with the two word line plates sharing the electrode, or a subset thereof, may represent a logical page for accessing memory cells. A memory cell may be accessed via a first voltage applied to a word line plate coupled with the memory cell and a second voltage applied to a pillar electrode coupled with the memory cell. Parallel or simultaneous access operations may be performed for two or more memory cells within a same page of memory cells.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Inventors: Paolo Fantini, Enrico Varesi, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20230230642
    Abstract: Systems, methods and apparatus to determine a programming mode of a set of memory cells that store an indicator of the programming mode. In response to a command to read the memory cells in a memory device, a first read voltage is applied to the memory cells to identify a first subset of the memory cells that become conductive under the first read voltage. The determination of the first subset is configured as an operation common to different programming modes. Based on whether the first subset of the memory cell includes one or more predefined memory cells, the memory device determines a programming mode of memory cells. Once the programming mode is identified from the common operation, the memory device can further execute the command to determine a data item stored, via the programming mode, in the memory cells.
    Type: Application
    Filed: March 24, 2023
    Publication date: July 20, 2023
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11696454
    Abstract: The present disclosure includes three dimensional memory arrays. An embodiment includes a first plurality of conductive lines separated from one another by an insulation material, a second plurality of conductive lines arranged to extend substantially perpendicular to and pass through the first plurality of conductive lines and the insulation material, and a storage element material formed between the first and second plurality of conductive lines where the second plurality of conductive lines pass through the first plurality of conductive lines. The storage element material is between and in direct contact with a first portion of each respective one of the first plurality of conductive lines and a portion of a first one of the second plurality of conductive lines, and a second portion of each respective one of the first plurality of conductive lines and a portion of a second one of the second plurality of conductive lines.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 4, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Russell L. Meyer, Agostino Pirovano, Lorenzo Fratin
  • Publication number: 20230207002
    Abstract: Methods, systems, and devices for a cross-point pillar architecture for memory arrays are described. Multiple selector devices may be configured to access or activate a pillar within a memory array, where the selector devices may each be or include a chalcogenide material. A pillar access line may be coupled with multiple selector devices, where each selector device may correspond to a pillar associated with the pillar access line. Pillar access lines on top and bottom of the pillars of the memory array may be aligned in a square or rectangle formation, or in a hexagonal formation. Pillars and corresponding selector devices on top and bottom of the pillars may be located at overlapping portions of the pillar access lines, thereby forming a cross point architecture for pillar selection or activation. The selector devices may act in pairs to select or activate a pillar upon application of a respective selection voltage.
    Type: Application
    Filed: January 10, 2022
    Publication date: June 29, 2023
    Inventors: Innocenzo Tortorelli, Fabio Pellizzer, Mattia Robustelli, Alessandro Sebastiani
  • Patent number: 11688460
    Abstract: As described, an apparatus may include a memory cell corresponding to a memory address and an access line forming at least a portion of the memory cell. The apparatus may include a first decoder associated with a first delivery driver coupled to a first end of the access line and a second decoder associated with a second delivery driver coupled to another end of the access line.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 27, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Nevil N. Gajera, John Frederic Schreck
  • Patent number: 11670367
    Abstract: Apparatuses, methods, and systems for sensing two memory cells to determine one data value are described herein. An embodiment includes a memory having a plurality of memory cells and circuitry configured to sense memory states of each of two memory cells to determine one data value. One data value is determined by sensing the memory state of a first one of the two memory cells using a first sensing voltage in a sense window between a first threshold voltage distribution corresponding to a first memory state and a second threshold voltage distribution corresponding to a second memory state and sensing the memory state of a second one of the two memory cells using a second sensing voltage in the sense window. The first and second sensing voltages are selectably closer in the sense window to the first threshold voltage distribution or the second threshold voltage distribution.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Fabio Pellizzer
  • Publication number: 20230171968
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a crosspoint memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Spike current suppression is implemented using a folded access line structure. Each access line includes integrated top and bottom insulating layers that restrict current flow to the memory cells through a narrower middle portion of the access line. For near memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the meandering, folded circuit path that flows through the middle portion. Spike discharge that occurs when the memory cell is selected is reduced by this higher resistance path.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 1, 2023
    Inventors: Srivatsan Venkatesan, Fabio Pellizzer
  • Patent number: 11664073
    Abstract: Systems, methods and apparatus to determine, in response to a command to write data into a set of memory cells, a programming mode of a set of memory cell to optimize performance in retrieving the data back from the set of memory cells. For example, based on usages of a memory region containing the memory cell set, a predictive model can be used to identify a combination of an amount of redundant information to be stored into the memory cells in the set and a programming mode of the memory cells to store the redundant information. Increasing the amount of redundant information can increase error recovery capability but increase bit error rate and/or increase time to read. The predictive model is trained to predict the combination to optimize read performance.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11647638
    Abstract: A memory cell design is disclosed. In an embodiment, the memory cell structure includes at least one memory bit layer stacked between top and bottom electrodes. The memory bit layer provides a storage element for a corresponding memory cell. One or more additional conductive layers may be included between the memory bit layer and either, or both, of the top or bottom electrodes to provide a better ohmic contact. In any case, a dielectric liner structure is provided on sidewalls of the memory bit layer. The liner structure includes a dielectric layer, and may also include a second dielectric layer on a first dielectric layer. Either or both first dielectric layer or second dielectric layer comprises a high-k dielectric material. As will be appreciated, the dielectric liner structure effectively protects the memory bit layer from lateral erosion and contamination during the etching of subsequent layers beneath the memory bit layer.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Anna Maria Conti, Fabio Pellizzer, Agostino Pirovano, Kolya Yastrebenetsky
  • Patent number: 11641788
    Abstract: Methods, systems, and devices for a resistive interface material are described. A memory device may be fabricated using a sequence of steps that include forming a stack of materials by depositing a first metal layer, depositing a first electrode layer on the metal layer, depositing a memory material on the first electrode layer to form one or more memory cells, depositing a second electrode layer on the memory material, and depositing a second metal layer on the second electrode layer. A lamina (or multiple) having a relatively high resistivity may be included in the stack of materials to reduce or eliminate a current spike that may otherwise occur across the memory cells during an access operation.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: May 2, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Gotti, Dale W. Collins, Fabio Pellizzer
  • Patent number: 11616098
    Abstract: An example apparatus includes a three-dimensional (3D) memory array including a sense line and a plurality of vertical stacks. Each respective on of the vertical stacks includes a different respective portion of the sense line, a first memory cell coupled to that portion of the sense line, a second memory cell coupled to that portion of the sense line, a first access line coupled to the first memory cell and a second access line coupled to the second memory cell. The first and second access lines are perpendicular to the sense line.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Lingming Yang, Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera, Lei Wei
  • Patent number: 11615854
    Abstract: Systems, methods and apparatus to determine a programming mode of a set of memory cells that store an indicator of the programming mode. In response to a command to read the memory cells in a memory device, a first read voltage is applied to the memory cells to identify a first subset of the memory cells that become conductive under the first read voltage. The determination of the first subset is configured as an operation common to different programming modes. Based on whether the first subset of the memory cell includes one or more predefined memory cells, the memory device determines a programming mode of memory cells. Once the programming mode is identified from the common operation, the memory device can further execute the command to determine a data item stored, via the programming mode, in the memory cells.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11610634
    Abstract: The present disclosure includes apparatuses, methods, and systems for sensing two memory cells to determine multiple data values. An embodiment includes a memory having a plurality of memory cells and circuitry configured to sense memory states of each of two self-selecting multi-level memory cells (MLC) of the plurality of memory cells to determine multiple data values. The data values are determined by sensing a memory state of a first MLC using a first sensing voltage in a sense window between a first threshold voltage distribution corresponding to a first memory state and a second threshold voltage distribution corresponding to a second memory state and sensing a memory state of a second MLC using a second sensing voltage in a sense window between the first threshold voltage distribution corresponding to a first memory state and a second threshold voltage distribution corresponding to the second memory state.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: March 21, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Fabio Pellizzer