Patents by Inventor Feng-Chi Hung

Feng-Chi Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220231058
    Abstract: An image sensor includes a pixel and an isolation structure. The pixel includes a photosensitive region and a circuitry region next to the photosensitive region. The isolation structure is located over the pixel, where the isolation structure includes a conductive grid and a dielectric structure covering a sidewall of the conductive grid, and the isolation structure includes an opening or recess overlapping the photosensitive region. The isolation structure surrounds a peripheral region of the photosensitive region.
    Type: Application
    Filed: May 24, 2021
    Publication date: July 21, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220223635
    Abstract: A semiconductor device includes a substrate having a front side and a back side opposite to each other. A plurality of photodetectors is disposed in the substrate within a pixel region. An isolation structure is disposed within the pixel region and between the photodetectors. The isolation structure includes a back side isolation structure extending from the back side of the substrate to a position in the substrate. A conductive plug structure is disposed in the substrate within a periphery region. A conductive cap is disposed on the back side of the substrate and extends from the pixel region to the periphery region and electrically connects the back side isolation structure to the conductive plug structure. A conductive contact lands on the conductive plug structure, and is electrically connected to the back side isolation structure through the conductive plug structure and the conductive cap.
    Type: Application
    Filed: May 17, 2021
    Publication date: July 14, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsing-Chih Lin, Feng-Chi Hung, Shyh-Fann Ting
  • Patent number: 11342374
    Abstract: An image-sensor device is provided. The image-sensor device includes a semiconductor substrate and a radiation-sensing region in the semiconductor substrate. The image-sensor device also includes a doped isolation region in the semiconductor substrate and a dielectric film extending into the doped isolation region from a surface of the semiconductor substrate. A portion of the doped isolation region is between the dielectric film and the radiation-sensing region.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung
  • Patent number: 11342373
    Abstract: A method for manufacturing an image sensing device includes forming an interconnection layer over a front surface of a semiconductor substrate. A trench is formed to extend from a back surface of the semiconductor substrate. An etch stop layer is formed along the trench. A buffer layer is formed over the etch stop layer. An etch process is performed for etching the buffer layer. The buffer layer and the etch stop layer include different materials.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chuang Wu, Ming-Tsong Wang, Feng-Chi Hung, Ching-Chun Wang, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20220157864
    Abstract: Some embodiments relate an integrated circuit (IC) including a first substrate including a plurality of imaging devices. A second substrate is disposed under the first substrate and includes a plurality of logic devices. A first interconnect structure is disposed between the first substrate and the second substrate and electrically couples imaging devices within the first substrate to one another. A second interconnect structure is disposed between the first interconnect structure and the second substrate, and electrically couples logic devices within the second substrate to one another. A bond pad structure is coupled to a metal layer of the second interconnect structure and extends along inner sidewalls of both the first interconnect structure and the second interconnect structure. An oxide layer extends from above the first substrate to below a plurality of metal layers of the first interconnect structure, and lines inner sidewalls of the bond pad structure.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Patent number: 11335716
    Abstract: A photosensing pixel includes a substrate, a photosensing region, a floating diffusion region, a transfer gate and a control electrode. The photosensing region is located within the substrate. The floating diffusion region is located within the substrate aside the photosensing region. The transfer gate is disposed on the substrate and extending into the photosensing region. The control electrode is located on the substrate and extending into the floating diffusion region.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Feng-Chi Hung, Chen-Hsien Lin, Tzu-Hsuan Hsu, Yan-Chih Lu
  • Patent number: 11282802
    Abstract: A semiconductor device structure is provided, in some embodiments. The semiconductor device structure includes a semiconductor substrate having a first surface, a second surface, and sidewalls defining a recess that passes through the semiconductor substrate. The semiconductor device structure further includes an interconnect structure having one or more interconnect layers within a first dielectric structure that is disposed along the second surface. A conductive bonding structure is disposed within the recess and includes nickel. The conductive bonding structure has opposing outermost sidewalls that contact sidewalls of the interconnect structure.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsien Yang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Sin-Yao Huang
  • Patent number: 11244981
    Abstract: Some embodiments relate an integrated circuit (IC). The IC includes a first substrate including an array of photodetectors, wherein a bond pad opening extends through the first substrate and is defined by an inner sidewall of the first substrate. An interconnect structure is disposed over the first substrate and includes a plurality of metal layers stacked over one another and disposed within a dielectric structure. The bond pad opening further extends through at least a portion of the interconnect structure and is further defined by an inner sidewall of the interconnect structure. A bond pad structure directly contacts a metal layer of the plurality of metal layers in the interconnect structure and is located at an uppermost extent of the bond pad opening.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Patent number: 11211419
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20210366956
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20210288029
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first plurality of interconnects arranged within a first inter-level dielectric (ILD) structure on a first substrate, and a second plurality of interconnects arranged within a second ILD structure between the first ILD structure and a second substrate. A bonding structure is disposed within a recess extending through the second substrate. A connector structure is vertically between the first plurality of interconnects and the second plurality of interconnects. The second plurality of interconnects include a first interconnect directly contacting the bonding structure. The second plurality of interconnects also include one or more extensions extending from directly below the first interconnect to laterally outside of the first interconnect and directly above the connector structure, as viewed along a cross-sectional view.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20210280620
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 9, 2021
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 11088192
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip (IC) structure. The method may be performed by forming a first integrated chip die having one or more semiconductor devices within a first substrate, and forming a passivation layer over the first integrated chip die. The passivation layer is selectively etched to form interior sidewalls defining a first opening, and a conductive material is deposited over the passivation layer and within the first opening. The conductive material is patterned to define a conductive blocking structure that laterally extends past the one or more semiconductor devices in opposing directions. The first integrated chip die is bonded to a second integrated chip die having an array of image sensing elements within a second substrate.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Yan-Chih Lu
  • Publication number: 20210233813
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Application
    Filed: April 12, 2021
    Publication date: July 29, 2021
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Patent number: 11069736
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first interconnect wire disposed within a dielectric structure on a substrate. A bond pad has a lower surface contacting the first interconnect wire. A via layer is vertically between the first interconnect wire and a second interconnect wire within the dielectric structure. The via layer includes a plurality of support vias having a first size and a plurality of additional vias having a second size that is smaller than the first size. The plurality of support vias extend from directly under the lower surface of the bond pad to laterally past outermost edges of the lower surface of the bond pad.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung
  • Publication number: 20210210532
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Publication number: 20210193712
    Abstract: A photosensing pixel includes a substrate, a photosensing region, a floating diffusion region, a transfer gate and a control electrode. The photosensing region is located within the substrate. The floating diffusion region is located within the substrate aside the photosensing region. The transfer gate is disposed on the substrate and extending into the photosensing region. The control electrode is located on the substrate and extending into the floating diffusion region.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 24, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Feng-Chi Hung, Chen-Hsien Lin, Tzu-Hsuan Hsu, Yan-Chih Lu
  • Patent number: 11024602
    Abstract: In some embodiments, the present disclosure relates to a method of forming a multi-dimensional integrated chip. The method includes forming a first plurality of interconnect layers within a first dielectric structure on a front-side of a first substrate and forming a second plurality of interconnect layers within a second dielectric structure on a front-side of a second substrate. A first redistribution layer coupled to the first plurality of interconnect layers is bonded to a second redistribution layer coupled to the second plurality of interconnect layers along an interface. A recess is formed within a back-side of the second substrate and over the second plurality of interconnect layers. A bond pad is formed within the recess. The bond pad is laterally separated from the first redistribution layer by a non-zero distance.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Patent number: 11011567
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 11004880
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang