Patents by Inventor Fengchun Pang

Fengchun Pang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11053539
    Abstract: A detection substrate and a manufacturing method thereof, and a nucleic acid detecting method are provided. The detection substrate includes at least one detection unit disposed on a base substrate, the detection unit including a first electrode, a second electrode and a colloid layer, the second electrode disposed on a side of the first electrode away from the base substrate, the second electrode including at least one hollowed structure, the second electrode and the first electrode being insulated from each other, and the first electrode and the second electrode being configured to be applied with voltages respectively; the colloid layer at least disposed on the at least one hollowed structure of the second electrode, the colloid layer including a linker configured to be paired with a target nucleic acid.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 6, 2021
    Assignees: BOE Technology Group Co., Ltd., Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Fengchun Pang, Peizhi Cai, Yue Geng
  • Publication number: 20210197163
    Abstract: A gene sequencing chip is provided, which includes: an upper substrate including a plurality of liquid inlets for inletting liquid drops; a lower substrate opposite to the upper substrate and spaced therefrom by a gap, the gap being provided for allowing the liquid drops to move therein, the lower substrate including a liquid drop operation region, the liquid drop operation region including a manipulation electrode array. The manipulation electrode array includes multiple first sub-arrays for preparing a gene library, multiple second sub-arrays for sequencing the gene library which is prepared, each first sub-array being adjacent to one of the multiple second sub-arrays. Based on the gene sequencing chip provided in this disclosure, operations to tiny liquid drops such as movement, fusion and splitting can be accurately manipulated by using digital microfluidic techniques, and all steps of the gene sequencing from library preparation to gene sequencing can be completed on one chip.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 1, 2021
    Inventors: Yue GENG, Fengchun PANG, Peizhi CAI, Le GU
  • Publication number: 20210195738
    Abstract: The present disclosure provides an electronic apparatus, a circuit board, and a method of manufacturing the same, which belongs to the field of circuit board technology. The method of manufacturing the circuit board includes: providing a base substrate, forming a first circuit layer on a side of the base substrate, and performing first to N-th circuit stacking operations in sequence, where an n-th circuit stacking operation comprises forming an n-th dielectric layer on a side of an n-th circuit layer away from the base substrate, the n-th dielectric layer having at least one n-th via exposing the n-th circuit layer provided therein, and forming an (n+1)-th circuit layer on a side of the n-th dielectric layer away from the base substrate, the (n+1)-th circuit layer being electrically connected with the n-th circuit layer through the n-th via, N being a positive integer greater than 1, 1?n?N, and n being an integer.
    Type: Application
    Filed: June 23, 2020
    Publication date: June 24, 2021
    Inventors: Fengchun PANG, Yue LI, Xue CAO
  • Publication number: 20210181198
    Abstract: There is provided an influenza virus detection chip and a method for detecting influenza virus therewith. An influenza virus detection chip including: a graphene oxide film; a first pad disposed on one side of the graphene oxide film in a first direction; and a first electrode and a second electrode, connected to both ends of the graphene oxide film in a second direction perpendicular to the first direction, wherein a first monoclonal antibody with a fluorescent label is included in the first pad, and a second monoclonal antibody is included in the graphene oxide film, and wherein the fluorescent label includes a C?C—C?C conjugated double bond.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 17, 2021
    Inventors: Fengchun PANG, Chuncheng CHE, Hailin XUE, Xibin SHAO, Peizhi CAI
  • Publication number: 20210164032
    Abstract: A chip, a detection system and a gene sequencing method are provided. When the chip is used for gene sequencing, sample genes and reversible terminating nucleotides are added into micropores and matched therein to release hydrogen ions such that a Nernst potential is induced on an ion-sensitive film surface, and a voltage is applied to the transparent electrode layer to generate an electric field, thereby controlling the switching layer to change its state, and then a base type of the genes is determined based on a type of reversible terminating nucleotide corresponding to information of light emitted from the switching layer upon changes in the state of the switching layer, thereby gene sequencing is achieved.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 3, 2021
    Inventors: Fengchun PANG, Peizhi CAI, Yue GENG
  • Publication number: 20210162409
    Abstract: A biological detection chip, a biological detection device, and a detection method thereof are disclosed. The biological detection chip includes a first base substrate and a plurality of detection units arranged in an array along a row direction and a column direction on the first base substrate. Each of the plurality of detection units includes a thin film transistor and an electrode, the thin film transistor is on the first base substrate and includes a gate electrode, a source electrode, and a drain electrode, and the electrode is on a side of the thin film transistor away from the first base substrate and is connected to the drain electrode, and the electrode is configured to carry a biological material to be detected.
    Type: Application
    Filed: March 27, 2019
    Publication date: June 3, 2021
    Inventors: Wenliang YAO, Nan ZHAO, Peizhi CAI, Fengchun PANG, Yue GENG, Le GU, Yuelei XIAO, Hui LIAO, Yingying ZHAO, Bolin FAN
  • Patent number: 10948815
    Abstract: The present disclosure discloses a mask, which includes a first substrate and a second substrate. The mask further includes a polarity particle positioned between the first substrate and the second substrate. The polarity particle has a light absorption or light transmission effect. The first substrate includes a plurality of driving electrodes disposed toward the second substrate and arranged in an array. Each of the driving electrodes is configured to receive an electric signal and control the polarity particle to move to a designated driving electrode to form a pattern.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 16, 2021
    Assignees: Beijing BOE Optoelectronics Technology Co., Ltd., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yue Geng, Peizhi Cai, Fengchun Pang, Le Gu, Chuncheng Che
  • Publication number: 20210060555
    Abstract: A microfluidic device, a microfluidic detection assembly and a detection method for the microfluidic device. The microfluidic device includes a first substrate and a second substrate; the first substrate and the second substrate are oppositely arranged to define a channel between the first substrate and the second substrate, the channel is configured for liquid to flow, the first substrate includes a base substrate and a plurality of control assemblies which are arranged on the base substrate along an extending direction of the channel, each of the plurality of control assemblies includes: a first electrode, a second electrode and a plurality of coils, and the first electrode is configured to input currents into the plurality of coils, and the plurality of coils are connected in parallel to the second electrode.
    Type: Application
    Filed: January 2, 2019
    Publication date: March 4, 2021
    Applicants: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wenliang YAO, Haochen CUI, Peizhi CAI, Yuelei XIAO, Fengchun PANG, Yue GENG, Le GU, Nan ZHAO, Hui LIAO, Yingying ZHAO, Chuncheng CHE
  • Publication number: 20210060556
    Abstract: A chip for polymerase chain reaction, a method of operating a chip for polymerase chain reaction, and a reaction device are provided. The chip includes: a sample adding region, a mixing region, a temperature cycling region in a sequential arrangement, and at least one driving unit group. The at least one driving unit group includes a plurality of driving units and is configured to drive a liquid drop to move and sequentially pass through the sample adding region, the mixing region, and the temperature cycling region.
    Type: Application
    Filed: January 9, 2019
    Publication date: March 4, 2021
    Applicants: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wenliang YAO, Nan ZHAO, Haochen CUI, Peizhi CAI, Fengchun PANG, Yue GENG, Le GU, Yuelei XIAO, Hui LIAO, Yingying ZHAO, Chuncheng CHE
  • Publication number: 20210063340
    Abstract: A chip, a method of operating a chip, and a detection device are provided. The chip includes a detection cavity and a working electrode, the detection cavity is configured to be capable of containing a plurality of droplets, and the working electrode is arranged in the detection cavity and is configured to regularly arrange the plurality of droplets in the detection cavity along an extending direction of the working electrode.
    Type: Application
    Filed: January 2, 2019
    Publication date: March 4, 2021
    Applicants: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wenliang YAO, Haochen CUI, Peizhi CAI, Fengchun PANG, Yue GENG, Le GU, Nan ZHAO, Yuelei XIAO, Hui LIAO, Yingying ZHAO, Chuncheng CHE
  • Patent number: 10908091
    Abstract: A biosensor, and a preparation and biosensing method therefor. The biosensor includes: a sensing substrate, wherein a plurality of sensing suspending arms arranged in an array are arranged on the sensing substrate, and the sensing suspending arms have identification markers; and a detection substrate, the detection substrate including a plurality of light detection assemblies arranged in an array, wherein the light detection assemblies and the sensing suspending arms are arranged in one-to-one correspondence, each of the light detection assemblies includes a photodiode and a thin film transistor, and the photodiode is connected to the thin film transistor.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 2, 2021
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yue Geng, Peizhi Cai, Fengchun Pang, Le Gu
  • Publication number: 20200391207
    Abstract: The present disclosure provides a microfluidic chip, a biological detection device and a method. The microfluidic chip includes: a first substrate and a second substrate that are oppositely disposed; a first electrode and a second electrode that are oppositely disposed between the first substrate and the second substrate, the first electrode including a plurality of spaced first electrode units, and the second electrode including a plurality of spaced second electrode units, wherein the first electrode units are disposed oppositely to the second electrode units in one-to-one correspondence; a first dielectric layer and a second dielectric layer between the first electrode and the second electrode; a first hydrophobic layer and a second hydrophobic layer between the first dielectric layer and the second dielectric layer, wherein a gap is between the first hydrophobic layer and the second hydrophobic layer.
    Type: Application
    Filed: October 11, 2018
    Publication date: December 17, 2020
    Inventors: Fengchun PANG, Peizhi CAI, Yue GENG, Le GU, Yingying ZHAO, Haochen CUI, Nan ZHAO, Yuelei XIAO, Hui LIAO, Chuncheng CHE
  • Publication number: 20200348292
    Abstract: The present disclosure relates to a bio-detection chip and a detection method associated therewith. The bio-detection chip includes an upper substrate, a lower substrate, a reference electrode, a driving electrode, and a first dielectric layer, a first hydrophobic layer, a second hydrophobic layer and a second dielectric layer disposed successively between the reference electrode and the driving electrode. The bio-detection chip further includes a plurality of micro-capsules arranged between the first hydrophobic layer and the second hydrophobic layer. Each micro-capsule encapsulates a plurality of charged microspheres, and surfaces of the charged microspheres have a first biomolecule for specifically binding with a second biomolecule that enters the bio-detection chip so as to give rise to a color change. The charged microspheres move close to the upper substrate when a voltage is applied between the reference electrode and the driving electrode.
    Type: Application
    Filed: April 23, 2018
    Publication date: November 5, 2020
    Applicants: Beijing BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Yue GENG, Peizhi CAI, Fengchun PANG, Le GU
  • Publication number: 20200338549
    Abstract: The present disclosure provides a microfluidic chip, including: first base substrate and a second base substrate opposite to each other; first electrode and second electrode between the first base substrate and the second base substrate and configured to control droplet to move between the first base substrate and the second base substrate according to voltages applied on the first electrode and the second electrode; light guide component configured to guide light propagating in the first base substrate to the droplet; shading component and detection component, shading component having light transmission regions spaced from each other, light transmission regions being configured to transmit light passing through the droplet to the detection component, wherein detection component is on second base substrate and is configured to obtain property of the droplet according to an intensity of the light passing through droplet and received from the light transmission regions.
    Type: Application
    Filed: November 13, 2019
    Publication date: October 29, 2020
    Inventors: Yingying ZHAO, Peizhi CAI, Le GU, Fengchun PANG, Yue GENG, Yuelei XIAO, Haochen CUI, Nan ZHAO, Hui LIAO, Wenliang YAO, Chuncheng CHE
  • Publication number: 20200330995
    Abstract: The present application provides a digital microfluidic device. The digital microfluidic device includes a base substrate; and an electrode array including a plurality of discrete electrodes continuously arranged on the base substrate. The plurality of discrete electrodes can be grouped into a plurality of first electrode groups, each of which including a plurality of directly adjacent discrete electrodes. The plurality of discrete electrodes can be alternatively grouped into a plurality of second electrode groups, each of which including a plurality of directly adjacent discrete electrodes.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 22, 2020
    Applicants: BOE Technology Group Co., Ltd., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yue Geng, Peizhi Cai, Chuncheng Che, Fengchun Pang
  • Patent number: 10801984
    Abstract: A chip substrate, a manufacturing method thereof, a gene sequencing chip, and a gene sequencing method. The chip substrate includes a base substrate; first electrode, located on the base substrate in an array; an insulating layer, located at gaps between two adjacent ones of the first electrodes, and partially covering the two adjacent ones of the first electrodes to form containing spaces being in one-to-one correspondence with the first electrodes; a capacitive dielectric layer, located on a side of the first electrodes away from the base substrate, and located in the containing spaces; and second electrodes, located on a side of the capacitive dielectric layer away from the base substrate, the capacitive dielectric layer includes a first region and a second region, an orthographic projection of the second electrodes on the base substrate is overlapped with an orthographic projection of the first region on the base substrate.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: October 13, 2020
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yue Geng, Fengchun Pang, Peizhi Cai, Le Gu
  • Publication number: 20200299765
    Abstract: The present disclosure relates to a gene sequencing structure, chip, system, and method. The gene sequencing structure includes: a first electrode and a second electrode spaced apart from each other, a semiconductor layer, a sensing electrode, an insulating layer, and a sensitive film layer. The first electrode is connected to the second electrode via the semiconductor layer, the sensing electrode is in contact with the sensitive film layer, and the insulating layer isolates each of the sensitive film layer and the sensing electrode from each of the first electrode, the second electrode, and the semiconductor layer, wherein the sensitive film layer generates charges in response to receiving ions generated by base pairing during gene sequencing.
    Type: Application
    Filed: February 11, 2018
    Publication date: September 24, 2020
    Inventors: Peizhi CAI, Fengchun PANG, Huazhe LIU
  • Publication number: 20200171491
    Abstract: A digital microfluidic chip and a digital microfluidic system. The digital microfluidic chip comprises: an upper substrate and a lower substrate arranged opposite to each other; multiple driving circuits and multiple addressing circuits disposed between the lower substrate and the upper substrate; and a control circuit, electrically connected to the driving circuits and the addressing circuits. The control circuit is configured to apply, in a driving stage, a driving voltage to each driving circuit, such that a droplet is controlled to move inside a droplet accommodation space according to a set path, measure, in a detection stage, after a bias voltage is applied to each addressing circuit, a charge loss amount of each addressing circuit, and to determine the position of the droplet according to the charge loss amount. The charge loss amount of each addressing circuit is related to the intensity of received external light.
    Type: Application
    Filed: July 26, 2019
    Publication date: June 4, 2020
    Inventors: Mingyang LV, Yue LI, Yanchen LI, Jinyu LI, Dawei FENG, Yu ZHAO, Dong WANG, Wang GUO, Hailong WANG, Yue GENG, Peizhi CAI, Fengchun PANG, Le GU, Chuncheng CHE, Haochen CUI, Yingying ZHAO, Nan ZHAO, Yuelei XIAO, Huyi LIAO
  • Publication number: 20200108387
    Abstract: A micro-total analysis system and a method thereof are provided. The micro-total analysis system includes: a microfluidic device, configured to accommodate a liquid to be detected; an optical unit, configured to form a first light irradiated to the microfluidic device; and a detection unit, configured to detect the liquid to be detected and output a detection signal to obtain detection information.
    Type: Application
    Filed: August 16, 2018
    Publication date: April 9, 2020
    Inventors: Xue DONG, Yanling HAN, Haisheng WANG, Chuncheng CHE, Xiaoliang DING, Yingming LIU, Yuzhen GUO, Wanxian XU, Peizhi CAI, Haochen CUI, Fengchun PANG
  • Publication number: 20200087721
    Abstract: A detection substrate and a manufacturing method thereof, and a nucleic acid detecting method are provided. The detection substrate includes at least one detection unit disposed on a base substrate, the detection unit including a first electrode, a second electrode and a colloid layer, the second electrode disposed on a side of the first electrode away from the base substrate, the second electrode including at least one hollowed structure, the second electrode and the first electrode being insulated from each other, and the first electrode and the second electrode being configured to be applied with voltages respectively; the colloid layer at least disposed on the at least one hollowed structure of the second electrode, the colloid layer including a linker configured to be paired with a target nucleic acid.
    Type: Application
    Filed: July 12, 2017
    Publication date: March 19, 2020
    Applicants: BOE Technology Group Co., Ltd., Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Fengchun Pang, Peizhi Cai, Yue Geng