Patents by Inventor Ferdinando F. Bruno

Ferdinando F. Bruno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030230743
    Abstract: Antioxidant polymers of the present invention comprise repeat units that include one or both of Structural Formulas (I) and (II): 1
    Type: Application
    Filed: April 4, 2003
    Publication date: December 18, 2003
    Applicant: University of Massachusetts Lowell
    Inventors: Ashok L. Cholli, Vijayendra Kumar, Jayant Kumar, Virinder Singh Parmar, Lynne Ann Samuelson, Ferdinando F. Bruno
  • Publication number: 20030186397
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Application
    Filed: March 14, 2003
    Publication date: October 2, 2003
    Inventors: Lynne A. Samuelson, Ferdinando F. Bruno
  • Publication number: 20020183470
    Abstract: Hematin, a hydroxyferriprotoporphyrin, is derivatized with one or more non-proteinaceous amphipathic groups. The derivatized hematin can serve as a mimic of horseradish peroxidase in polymerizing aromatic monomers, such as aromatic compounds. These derivatized hematins can also be used as catalysts in polymerizing aromatic monomers, and can exhibit significantly greater catalytic activity than underivatized hematin in acidic solutions. In one embodiment, polymerization is in the presence of a template, along which aromatic monomers align. An assembled hematin includes alternating layers of hematin and a polyelectrolyte, which are deposited on an electrically charged substrate. Assembled hematin can also be used to polymerize aromatic monomers.
    Type: Application
    Filed: November 27, 2001
    Publication date: December 5, 2002
    Inventors: Sukant Tripathy, Susan Tripathy, Lynne A. Samuelson, Ferdinando F. Bruno, Sucharita Roy, Ramaswamy Nagarajan, Jayant Kumar, Bon-Cheol Ku, Soo-Hyoung Lee
  • Patent number: 6455285
    Abstract: Protease enzyme from Bacillus subtilis and Bacillus sp. Catalyzes the acylation of organic solvent-insoluble macromolecules in isooctane solution containing vinyl esters of fatty acids, lactones or lactides as acyl donors. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctylsulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated in macromolecules such as silk proteins. These macromolecules are reactive either as cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. This selective acylation approach represents the first attempt at using enzymes to modify organic-insoluble macromolecules in nonaqueous media.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: September 24, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, Ferdinando F. Bruno
  • Patent number: 6448050
    Abstract: Protease enzyme from Bacillus subtilis and Bacillus sp. Catalyzes the acylation of organic solvent-insoluble macromolecules in isooctane solution containing vinyl esters of fatty acids, lactones or lactides as acyl donors. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctylsulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated in macromolecules such as silk proteins. These macromolecules are reactive either as cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. This selective acylation approach represents the first attempt at using enzymes to modify organic-insoluble macromolecules in nonaqueous media.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: September 10, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, Ferdinando F. Bruno
  • Patent number: 6228997
    Abstract: Bacillus subtilis protease catalyzes the acylation of organic solvent-insoluble polysaccharides in isooctane solution containing vinyl esters of fatty acids as acyl donor. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctyl sulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated with amylose, cyclodextrins, cellulose, cellulose derivatives, and other polysaccharides such as chitosan, pullulan, and maltodextrose. These polysaccharides are reactive either as a cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. For chitosan, &agr;-cyclodextrin, and hydroxyethyl cellulose (HEC), the enzymatic crosslinking reaction occurs using adipic acid divinyl ester (C6DVE). HEC forms a compound that gels in solvents such as ethyl alcohol and dimethyl sulfone oxide (DMSO).
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: May 8, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, David L. Kaplan, Ferdinando F. Bruno, Jonathan S. Dordick
  • Patent number: 6210936
    Abstract: Protease enzyme from Bacillus subtilis and Bacillus sp. Catalyzes the acylation of organic solvent-insoluble macromolecules in isooctane solution containing vinyl esters of fatty acids, lactones or lactides as acyl donors. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctylsulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated in macromolecules such as silk proteins. These macromolecules are reactive either as cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. This selective acylation approach represents the first attempt at using enzymes to modify organic-insoluble macromolecules in nonaqueous media.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: April 3, 2001
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, Ferdinando F. Bruno
  • Patent number: 6063916
    Abstract: Bacillus subtilis protease catalyzes the acylation of organic solvent-insoluble polysaccharides in isooctane solution containing vinyl esters of fatty acids as acyl donor. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctyl sulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated with amylose, cyclodextrins, cellulose, cellulose derivatives, and other polysaccharides such as chitosan, pullulan, and maltodextrose. These polysaccharides are reactive either as a cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. For chitosan, .alpha.-cyclodextrin, and hydroxyethyl cellulose (HEC), the enzymatic crosslinking reaction occurs using adipic acid divinyl ester (C6DVE). HEC forms a compound that gels in solvents such as ethyl alcohol and dimethyl sulfone oxide (DMSO). Electron spectroscopy chemical analysis (ESCA) of the first 100 .ANG.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: May 16, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, David L. Kaplan, Ferdinando F. Bruno, Jonathan S. Dordick
  • Patent number: 5981240
    Abstract: A method is described for a simple, fast and efficient synthesis of homopolymers and copolymers by the enzymatic ring opening polymerization of lactones and lactides. The enzyme used is an ion paired protease. The advantage of this enzymatic system is in using small amount of enzyme per monomer and lower reaction time. Homopolymers and copolymers are synthesized with molecular weights between 1000 and 4600 daltons, and dispersity as low as 1.1. The monomer conversion after 4 days, for reactions catalyzed by protease S, has reached 100%. Different initiators are used to control the rate and degree of polymerization. Synthesis of block copolymers with defined block size and crystallinity are described in this invention. These biodegradable and bioerodable polyesters and copolyesters with controlled molecular weight, dispersity and crystallinity have applications in medical, drug, cosmetic and food industries.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: November 9, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, Ferdinando F. Bruno
  • Patent number: 5143828
    Abstract: A method for synthesizing enzyme-catalyzed polymers using the Langmuir-Blodgett technique. In one embodiment, the process comprises spreading one or more enzyme-polymerizable monomers on a water-miscible solvent. The monomers are sufficiently surface active that they align themselves on the air-solvent interface. Next, pressure is applied to the interface to form a monolayer made up of the monomers. An enzyme is then introduced into the solvent, causing polymerization of the monomers in the monolayer. The polymeric monolayers produced by the present method are easier to process and have reduced cross-linking and branching as compared to similar polymers produced in bulk by enzyme-catalyzed reactions.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: September 1, 1992
    Assignees: The United States of America as represented by the Secretary of the Army, University of Massachusetts Lowell
    Inventors: Joseph A. Akkara, David L. Kaplan, Lynne A. Samuelson, Braja K. Mandal, Sukant K. Tripathy, Ferdinando F. Bruno, Kenneth A. Marx