Patents by Inventor Frederick J. Cogswell

Frederick J. Cogswell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230400230
    Abstract: A method for operating a heat pump (20; 300) includes operating in a cooling mode wherein heat is absorbed by refrigerant in the indoor heat exchanger (26) and rejected by refrigerant in the outdoor heat exchanger (24). The heat pump switches to operation in a heating mode wherein heat is rejected by refrigerant in the indoor heat exchanger, heat is absorbed by refrigerant in the outdoor heat exchanger, and there is an ejector (60) motive flow and ejector secondary flow. In the heating mode a refrigerant pressure (PH) or temperature (TL) is measured and, responsive to the measured refrigerant pressure or temperature, at least one of a fan speed is changed and a needle (132) of the ejector is actuated.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Jinliang Wang, Frederick J. Cogswell, Parmesh Verma
  • Patent number: 11781791
    Abstract: A method for operating a heat pump (20; 300) includes operating in a cooling mode wherein heat is absorbed by refrigerant in the indoor heat exchanger (26) and rejected by refrigerant in the outdoor heat exchanger (24). The heat pump switches to operation in a heating mode wherein heat is rejected by refrigerant in the indoor heat exchanger, heat is absorbed by refrigerant in the outdoor heat exchanger, and there is an ejector (60) motive flow and ejector secondary flow. In the heating mode a refrigerant pressure (PH) or temperature (TL) is measured and, responsive to the measured refrigerant pressure or temperature, at least one of a fan speed is changed and a needle (132) of the ejector is actuated.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: October 10, 2023
    Assignee: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Jinliang Wang, Frederick J. Cogswell, Parmesh Verma
  • Publication number: 20230160610
    Abstract: A system has: a compressor having a suction port and a discharge port; an ejector having a motive flow inlet, a suction flow inlet, and an outlet; a separator having an inlet, a vapor outlet, and a liquid outlet; a first heat exchanger; an expansion device; and a second heat exchanger. Conduits and valves are positioned to provide alternative operation in: a cooling mode and a heating mode. In the cooling mode, a needle of the ejector is closed. In the heating mode refrigerant passes sequentially from a first section of the second heat exchanger to a second section. In the cooling mode refrigerant passes in parallel through the first section and the second section.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 25, 2023
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Patent number: 11561028
    Abstract: A system (20; 300) has: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 24, 2023
    Assignee: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Patent number: 11448427
    Abstract: A refrigerated system includes a vapor compression system defining a refrigerant flow path and a heat recovery system defining a heat recovery fluid flow path. The heat recovery system is thermally coupled to the vapor compression system. The heat recovery system includes a first heat exchanger within which heat is transferred between a heat recovery fluid and an engine coolant and at least one recovery heat exchanger positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: September 20, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Hongsheng Liu, Parmesh Verma, Frederick J. Cogswell, Yinshan Feng
  • Patent number: 11408647
    Abstract: A refrigerated system includes a heat recovery system defining a heat recovery fluid flow path. The heat recovery system includes an ejector having a primary inlet and a secondary inlet and a first heat exchanger within which heat is transferred between a heat recovery fluid and a secondary fluid. The first heat exchanger is located upstream from the primary inlet of the ejector. A second heat exchanger within which heat is transferred from a heat transfer fluid to the heat recovery fluid is upstream from the secondary inlet of the ejector. At least one recovery heat exchanger is positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: August 9, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Frederick J. Cogswell, Yinshan Feng, Parmesh Verma, Hongsheng Liu, Dhruv Chanakya Hoysall
  • Publication number: 20220227198
    Abstract: A refrigerated transport system comprises: an engine. A vapor compression system comprises: a compressor for compressing a flow of a refrigerant; a first heat exchanger along a refrigerant flowpath of the refrigerant; and a second heat exchanger along the refrigerant flowpath of the refrigerant. A heat recovery system has: a first heat exchanger for transferring heat from the engine to a heat recovery fluid along a heat recovery flowpath; and a second heat exchanger along the heat recovery flowpath. The heat recovery system second heat exchanger and the vapor compression system first heat exchanger are respective portions of a shared tube/fin package.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Applicant: Carrier Corporation
    Inventors: Abdelrahman I. ElSherbini, Parmesh Verma, Frederick J. Cogswell
  • Patent number: 11326789
    Abstract: An air conditioning system and a control method thereof. The air conditioning system includes a main circuit and a first subcooling circuit, wherein the main circuit has: a main compressor and an injector; a gas cooler and a gas-liquid separator connected between the main compressor and the injector; and a main throttling element and an evaporator connected between the gas-liquid separator and the injector; and wherein the first subcooling circuit has: a first subcooling compressor, a first condenser, a first subcooling throttling element and a first subcooler connected in sequence; wherein the first subcooler is further disposed in a flow path between the outlet of the injector and the gas-liquid separator.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: May 10, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Hongsheng Liu, Yinshan Feng, Frederick J. Cogswell, Parmesh Verma
  • Publication number: 20220113065
    Abstract: A system has a first compressor and a second compressor. A heat rejection heat exchanger is coupled to the first and second compressors to receive refrigerant compressed by the compressors. The system includes an economizer for receiving refrigerant from the heat rejection heat exchanger and reducing an enthalpy of a first portion of the received refrigerant while increasing an enthalpy of a second portion. The second portion is returned to the compressor. The ejector has a primary inlet coupled to the means to receive a first flow of the reduced enthalpy refrigerant. The ejector has a secondary inlet and an outlet. The outlet is coupled to the first compressor to return refrigerant to the first compressor. A first heat absorption heat exchanger is coupled to the economizer to receive a second flow of the reduced enthalpy refrigerant and is upstream of the secondary inlet of the ejector. A second heat absorption heat exchanger is between the outlet of the ejector and the first compressor.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: Carrier Corporation
    Inventors: Jinliang Wang, Parmesh Verma, Frederick J. Cogswell
  • Patent number: 11300327
    Abstract: A refrigerated transport system (20) comprises: an engine (30). A vapor compression system (50) comprises: a compressor (40) for compressing a flow of a refrigerant; a first heat exchanger (60) along a refrigerant flowpath (52) of the refrigerant; and a second heat exchanger (66) along the refrigerant flowpath of the refrigerant. A heat recovery system (56) has: a first heat exchanger (110) for transferring heat from the engine to a heat recovery fluid along a heat recovery flowpath (58); and a second heat exchanger (112; 63) along the heat recovery flowpath. The heat recovery system second heat exchanger and the vapor compression system first heat exchanger are respective portions of a shared tube/fin package.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 12, 2022
    Assignee: Carrier Corporation
    Inventors: Abdelrahman I. Elsherbini, Parmesh Verma, Frederick J. Cogswell
  • Patent number: 11209191
    Abstract: A system has a first compressor and a second compressor. A heat rejection heat exchanger is coupled to the first and second compressors to receive refrigerant compressed by the compressors. The system includes an economizer for receiving refrigerant from the heat rejection heat exchanger and reducing an enthalpy of a first portion of the received refrigerant while increasing an enthalpy of a second portion. The second portion is returned to the compressor. The ejector has a primary inlet coupled to the means to receive a first flow of the reduced enthalpy refrigerant. The ejector has a secondary inlet and an outlet. The outlet is coupled to the first compressor to return refrigerant to the first compressor. A first heat absorption heat exchanger is coupled to the economizer to receive a second flow of the reduced enthalpy refrigerant and is upstream of the secondary inlet of the ejector. A second heat absorption heat exchanger is between the outlet of the ejector and the first compressor.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 28, 2021
    Assignee: Carrier Corporation
    Inventors: Jinliang Wang, Parmesh Verma, Frederick J. Cogswell
  • Publication number: 20210270509
    Abstract: A method for operating a heat pump (20; 300) includes operating in a cooling mode wherein heat is absorbed by refrigerant in the indoor heat exchanger (26) and rejected by refrigerant in the outdoor heat exchanger (24). The heat pump switches to operation in a heating mode wherein heat is rejected by refrigerant in the indoor heat exchanger, heat is absorbed by refrigerant in the outdoor heat exchanger, and there is an ejector (60) motive flow and ejector secondary flow. In the heating mode a refrigerant pressure (PH) or temperature (TL) is measured and, responsive to the measured refrigerant pressure or temperature, at least one of a fan speed is changed and a needle (132) of the ejector is actuated.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 2, 2021
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Jinliang Wang, Frederick J. Cogswell, Parmesh Verma
  • Publication number: 20210247107
    Abstract: A HVAC system includes a compressor having a low pressure input and a high pressure output. The compressor is driven by a motor having a liquid coolant flowpath configured to cool and lubricate the motor. The motor has a coolant input and a coolant output. An evaporator is in communication with the compressor, and includes a coolant input and a coolant output. A condenser is in fluid communication with the evaporator and the compressor. A first coolant flowpath, includes a coolant drive system connecting the output of the condenser to a valve switching device. A second coolant flowpath connects the output of the condenser to the input of the evaporator and to a second input of the valve switching device. A third coolant flowpath connects the valve switching device to the inputs of the motor. A fourth coolant flowpath connects outputs of the motor to the input of the evaporator.
    Type: Application
    Filed: August 30, 2019
    Publication date: August 12, 2021
    Inventors: Jinliang Wang, Ahmad M. Mahmoud, Frederick J. Cogswell, Parmesh Verma
  • Patent number: 10935286
    Abstract: A refrigerant system includes a first, substantially outdoor, two phase heat transfer fluid vapor compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and the heat absorption side of a heat exchanger evaporator condenser, connected by conduit in a closed loop and having disposed therein a first heat transfer fluid having a critical temperature of greater than or equal to 31.2° C. The system also includes a second, at least partially indoor, two phase heat transfer fluid circulation loop that transfers heat to the first loop through the heat exchanger evaporator condenser. The second loop includes the heat rejection side of the heat exchanger evaporator condenser, a liquid pump, and a heat exchanger evaporator, connected by conduit in a closed loop and having disposed therein a second heat transfer fluid that has an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 2, 2021
    Assignee: CARRIER CORPORATION
    Inventors: Parmesh Verma, Frederick J. Cogswell, Thomas D. Radcliff, Mohsen Farzad, Vladimir Blasko, Jules R. Munoz, Seshadri Sivakumar
  • Publication number: 20200370809
    Abstract: A system (20; 300) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Publication number: 20200318839
    Abstract: An air conditioning system and a control method thereof. The air conditioning system includes a main circuit and a first subcooling circuit, wherein the main circuit has: a main compressor and an injector; a gas cooler and a gas-liquid separator connected between the main compressor and the injector; and a main throttling element and an evaporator connected between the gas-liquid separator and the injector; and wherein the first subcooling circuit has: a first subcooling compressor, a first condenser, a first subcooling throttling element and a first subcooler connected in sequence; wherein the first subcooler is further disposed in a flow path between the outlet of the injector and the gas-liquid separator.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 8, 2020
    Inventors: Hongsheng Liu, Yinshan Feng, Frederick J. Cogswell, Parmesh Verma
  • Patent number: 10739052
    Abstract: A system (20; 300) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: August 11, 2020
    Assignee: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Publication number: 20200248932
    Abstract: A refrigerated system includes a heat recovery system defining a heat recovery fluid flow path. The heat recovery system includes an ejector having a primary inlet and a secondary inlet and a first heat exchanger within which heat is transferred between a heat recovery fluid and a secondary fluid. The first heat exchanger is located upstream from the primary inlet of the ejector. A second heat exchanger within which heat is transferred from a heat transfer fluid to the heat recovery fluid is upstream from the secondary inlet of the ejector. At least one recovery heat exchanger is positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Inventors: Frederick J. Cogswell, Yinshan Feng, Parmesh Verma, Hongsheng Liu, Dhruv Chanakya Hoysall
  • Publication number: 20200248938
    Abstract: A refrigerated system includes a vapor compression system defining a refrigerant flow path and a heat recovery system defining a heat recovery fluid flow path. The heat recovery system is thermally coupled to the vapor compression system. The heat recovery system includes a first heat exchanger within which heat is transferred between a heat recovery fluid and an engine coolant and at least one recovery heat exchanger positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Inventors: Hongsheng Liu, Parmesh Verma, Frederick J. Cogswell, Yinshan Feng
  • Patent number: 10648702
    Abstract: A system (20; 300) comprises: a vapor compression loop (38; 338); a low-pressure or medium-pressure refrigerant in the loop; a centrifugal compressor (42) along the vapor compression loop and comprising: a housing (120); an inlet (44); an outlet (46); an impeller (140); an electric motor (122) coupled to the impeller to drive rotation of the impeller; and one or more refrigerant-lubricated bearings (130, 132).
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: May 12, 2020
    Assignee: Carrier Corporation
    Inventors: Parmesh Verma, Frederick J. Cogswell, William T. Cousins, Vishnu M. Sishtla, Ulf J. Jonsson, Larry D. Burns