Patents by Inventor Frederick J. Cogswell

Frederick J. Cogswell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10551097
    Abstract: In one aspect, a refrigeration system is provided. The refrigeration system includes a refrigeration circuit configured to condition an air supply, a subcooling circuit configured to cool the refrigeration circuit, the subcooling circuit including a subcooling condenser, a subcooling heat exchanger, and at least one adsorption bed, and a heat generation system thermally coupled to the subcooling circuit.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: February 4, 2020
    Assignee: CARRIER CORPORATION
    Inventors: Frederick J. Cogswell, Catherine Thibaud, Parmesh Verma, Bart A. Van Hassel, Thomas D. Radcliff, Abdelrahman ElSherbini, Robert A. Chopko
  • Patent number: 10386100
    Abstract: In one aspect, a heat exchanger layer for an adsorption bed heat exchanger assembly is provided. The heat exchanger layer includes at least one fluid tube configured to supply a heat transfer fluid, a sorbent containment structure having a plurality of compartments, and a sorbent disposed within the plurality of compartments.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: August 20, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Frederick J. Cogswell, Parmesh Verma, Catherine Thibaud, Bart A. Van Hassel, Thomas D. Radcliff, Subramanyaravi Annapragada, Abdelrahman ElSherbini
  • Patent number: 10352592
    Abstract: A vapor compression system (200; 300; 400) has: a compressor (22); a first heat exchanger (30); a second heat exchanger (64); an ejector (38); separator (48); and an expansion device (70). A plurality of conduits are positioned to define a first flowpath sequentially through: the compressor; the first heat exchanger; the ejector from a motive flow inlet through (40) an outlet (44); and the separator, and then branching into: a first branch returning to the compressor; and a second branch passing through the expansion device and second heat exchanger to a secondary flow inlet (42). The plurality of conduits are positioned to define a bypass flowpath (202; 302; 402) bypassing the motive flow inlet and rejoining the first flowpath at essentially separator pressure but away from the separator.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 16, 2019
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Zuojun Shi, Hans-Joachim Huff, Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell, Jinliang Wang, Hongsheng Liu
  • Publication number: 20190118618
    Abstract: A refrigerated transport system (20) comprises: an engine (30). A vapor compression system (50) comprises: a compressor (40) for compressing a flow of a refrigerant; a first heat exchanger (60) along a refrigerant flowpath (52) of the refrigerant; and a second heat exchanger (66) along the refrigerant flowpath of the refrigerant. A heat recovery system (56) has: a first heat exchanger (110) for transferring heat from the engine to a heat recovery fluid along a heat recovery flowpath (58); and a second heat exchanger (112; 63) along the heat recovery flowpath. The heat recovery system second heat exchanger and the vapor compression system first heat exchanger are respective portions of a shared tube/fin package.
    Type: Application
    Filed: April 25, 2017
    Publication date: April 25, 2019
    Applicant: Carrier Corporation
    Inventors: Abdelrahman I. Elsherbini, Parmesh Verma, Frederick J. Cogswell
  • Publication number: 20180328638
    Abstract: A system (20; 300) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); an expansion device (28); and a second heat exchanger (26; 302). Conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode; and a second heating mode. In the cooling mode and second heating mode, a needle (60) of the ejector is closed.
    Type: Application
    Filed: November 18, 2016
    Publication date: November 15, 2018
    Applicant: Carrier Corporation
    Inventors: Ahmad M. Mahmoud, Parmesh Verma, Zuojun Shi, Frederick J. Cogswell
  • Publication number: 20180224168
    Abstract: A system (20; 300) comprises: a vapor compression loop (38; 338); a low-pressure or medium-pressure refrigerant in the loop; a centrifugal compressor (42) along the vapor compression loop and comprising: a housing (120); an inlet (44); an outlet (46); an impeller (140); an electric motor (122) coupled to the impeller to drive rotation of the impeller; and one or more refrigerant-lubricated bearings (130, 132).
    Type: Application
    Filed: August 11, 2016
    Publication date: August 9, 2018
    Applicant: Carrier Corporation
    Inventors: Parmesh Verma, Frederick J. Cogswell, William T. Cousins, Vishnu M. Sishtla, Ulf J. Jonsson, Larry D. Burns
  • Publication number: 20180156499
    Abstract: A vapor compression system (200; 300; 400) comprising: a compressor (22); a first heat exchanger (30); a second heat exchanger (64); an ejector (38); separator (48); and an expansion device (70). A plurality of conduits are positioned to define a first flowpath sequentially through: the compressor; the first heat exchanger; the ejector from a motive flow inlet through (40) an outlet (44); and the separator, and then branching into: a first branch returning to the compressor; and a second branch passing through the expansion device and second heat exchanger to a secondary flow inlet (42). The plurality of conduits are positioned to define a bypass flowpath (202; 302; 402) bypassing the motive flow inlet and rejoining the first flowpath at essentially separator pressure but away from the separator.
    Type: Application
    Filed: May 26, 2016
    Publication date: June 7, 2018
    Applicant: Carrier Corporation
    Inventors: Alexander Lifson, Zuojun Shi, Hans-Joachim Huff, Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell, Jinliang Wang, Hongsheng Liu
  • Patent number: 9857101
    Abstract: A system (170) has a compressor (22). A heat rejection heat exchanger (30) is coupled to the compressor to receive refrigerant compressed by the compressor. A non-controlled ejector (38) has a primary inlet coupled to the heat rejection exchanger to receive refrigerant, a secondary inlet, and an outlet. The system includes means (172, e.g., a nozzle) for causing a supercritical-to-subcritical transition upstream of the ejector.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 2, 2018
    Assignee: Carrier Corporation
    Inventors: Thomas D. Radcliff, Parmesh Verma, Jinliang Wang, Frederick J. Cogswell
  • Publication number: 20170314826
    Abstract: In one aspect, a refrigeration system is provided. The refrigeration system includes a refrigeration circuit configured to condition an air supply, a subcooling circuit configured to cool the refrigeration circuit, the subcooling circuit including a subcooling condenser, a subcooling heat exchanger, and at least one adsorption bed, and a heat generation system thermally coupled to the subcooling circuit.
    Type: Application
    Filed: September 11, 2015
    Publication date: November 2, 2017
    Applicant: Carrier Corporation
    Inventors: Frederick J. Cogswell, Catherine Thibaud, Parmesh Verma, Bart A. Van Hassel, Thomas D. Radcliff, Abdelrahman ElSherbini, Robert A. Chopko
  • Patent number: 9752801
    Abstract: A system (200; 250; 270) has first (220) and second (222) compressors, a heat rejection heat exchanger (30), first (38) and second (202) ejectors, a heat absorption heat exchanger (64), and a separator (48). The heat rejection heat exchanger is coupled to the second compressor to receive refrigerant compressed by the second compressor. The first ejector has a primary inlet (40) coupled to the heat rejection exchanger to receive refrigerant, a secondary inlet (42), and an outlet (44). The second ejector has a primary inlet (204) coupled to the heat rejection heat exchanger to receive refrigerant, a secondary inlet (206), and an outlet (208). The separator has an inlet (50) coupled to the outlet (44) of the first ejector to receive refrigerant from the first ejector. The separator has a gas outlet (54) coupled to the secondary inlet (206) of the second ejector via the first compressor (220) to deliver refrigerant to the second ejector.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 5, 2017
    Assignee: Carrier Corporation
    Inventors: Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell
  • Patent number: 9696069
    Abstract: An ejector has a primary inlet, a secondary inlet, and an outlet. A primary flowpath extends from the primary inlet to the outlet and a secondary flowpath extends from the secondary inlet to the outlet, merging with the primary flowpath. A motive nozzle surrounds the primary flowpath upstream of a junction with the secondary flowpath. The motive nozzle has a throat and an exit. In one group of embodiments, an effective area of the exit is variable. In others, the needle may extend downstream from a flow control portion or may have an upstream convergent surface of a flow control portion.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: July 4, 2017
    Assignee: Carrier Corporation
    Inventors: Hongsheng Liu, Jiang Zou, Frederick J. Cogswell, Jinliang Wang, Parmesh Verma
  • Patent number: 9689281
    Abstract: An Organic Rankine Cycle system includes a turbine driven by a working fluid and a generator driven by the turbine. The turbine includes a rotor volume that is at sub-atmospheric pressure, and the working fluid is sprayed into the rotor volume. The turbine can be arranged in a primary circuit that also includes, in flow series from the turbine, a condenser, a first pump, and an evaporator. The rotor volume can be arranged in a secondary cooling circuit that includes, in flow series from the rotor volume, a heat exchanger, a second pump, and a restriction valve located downstream of the second pump and upstream of the rotor volume.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 27, 2017
    Assignee: NANJING TICA AIR-CONDITIONING CO., LTD.
    Inventors: Frederick J. Cogswell, Bruce P. Biederman
  • Publication number: 20170102170
    Abstract: A system has a first compressor and a second compressor. A heat rejection heat exchanger is coupled to the first and second compressors to receive refrigerant compressed by the compressors. The system includes an economizer for receiving refrigerant from the heat rejection heat exchanger and reducing an enthalpy of a first portion of the received refrigerant while increasing an enthalpy of a second portion. The second portion is returned to the compressor. The ejector has a primary inlet coupled to the means to receive a first flow of the reduced enthalpy refrigerant. The ejector has a secondary inlet and an outlet. The outlet is coupled to the first compressor to return refrigerant to the first compressor. A first heat absorption heat exchanger is coupled to the economizer to receive a second flow of the reduced enthalpy refrigerant and is upstream of the secondary inlet of the ejector. A second heat absorption heat exchanger is between the outlet of the ejector and the first compressor.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Applicant: Carrier Corporation
    Inventors: Jinliang Wang, Parmesh Verma, Frederick J. Cogswell
  • Patent number: 9523364
    Abstract: A system (20) has a first compressor (22) and a second compressor (52). A heat rejection heat exchanger (30) is coupled to the first and second compressors to receive refrigerant compressed by the compressors. The system includes an economizer for receiving refrigerant from the heat rejection heat exchanger and reducing an enthalpy of a first portion of the received refrigerant while increasing an enthalpy of a second portion. The second portion is returned to the compressor. The ejector (66) has a primary inlet (70) coupled to the means to receive a first flow of the reduced enthalpy refrigerant. The ejector has a secondary inlet (72) and an outlet (74). The outlet is coupled to the first compressor to return refrigerant to the first compressor. A first heat absorption heat exchanger (80) is coupled to the economizer to receive a second flow of the reduced enthalpy refrigerant and is upstream of the secondary inlet of the ejector.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 20, 2016
    Assignee: Carrier Corporation
    Inventors: Jinliang Wang, Parmesh Verma, Frederick J. Cogswell
  • Publication number: 20160334150
    Abstract: An ejector has: a motive flow inlet; a secondary flow inlet; an outlet; and a motive nozzle. The motive nozzle has an exit. A motive flow flowpath proceeds through the motive nozzle and joins a secondary flow flowpath extending from the secondary flow inlet to form a combined flowpath to the outlet. From upstream to downstream along the motive flow flowpath, the motive nozzle has: a convergent section; a throat; a first divergent section commencing within 10% of a throat-to-exit length and diverging over a first length (LD1) of at least 10% of the throat-to-exit length (LTE); a second divergent section, the second divergent section diverging over a second length (LD2) of at least 10% of the throat-to-exit length at a shallower angle than the first divergent section over said first length.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 17, 2016
    Applicant: Carrier Corporation
    Inventors: Jinliang Wang, Parmesh Verma, Frederick J. Cogswell
  • Publication number: 20160195316
    Abstract: An ejector has a primary inlet, a secondary inlet, and an outlet. A primary flowpath extends from the primary inlet to the outlet and a secondary flowpath extends from the secondary inlet to the outlet, merging with the primary flowpath. A motive nozzle surrounds the primary flowpath upstream of a junction with the secondary flowpath. The motive nozzle has a throat and an exit. In one group of embodiments, an effective area of the exit is variable. In others, the needle may extend downstream from a flow control portion or may have an upstream convergent surface of a flow control portion.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Applicant: Carrier Corporation
    Inventors: Hongsheng Liu, Jiang Zou, Frederick J. Cogswell, Jinliang Wang, Parmesh Verma
  • Publication number: 20160131400
    Abstract: In one aspect, a heat exchanger layer for an adsorption bed heat exchanger assembly is provided. The heat exchanger layer includes at least one fluid tube configured to supply a heat transfer fluid, a sorbent containment structure having a plurality of compartments, and a sorbent disposed within the plurality of compartments.
    Type: Application
    Filed: September 11, 2015
    Publication date: May 12, 2016
    Inventors: Frederick J. Cogswell, Parmesh Verma, Catherine Thibaud, Bart A. Van Hassel, Thomas D. Radcliff, Subramanyaravi Annapragada, Abdelrahman ElSherbini
  • Patent number: 9308491
    Abstract: A contactor configured for use in a dehumidification system is provided including a plurality of contact modules. Each contact module has a porous sidewall that defines an internal space through which a hygroscopic material flows. Adjacent contact modules are fluidly coupled to form a multipass flow path for the hygroscopic material through the contactor.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: April 12, 2016
    Assignee: CARRIER CORPORATION
    Inventors: Sherif Kandil, Kenneth David Smith, Zidu Ma, Rajiv Ranjan, Frederick J. Cogswell, Zissis A. Dardas, Bart A. Van Hassel
  • Patent number: 9285146
    Abstract: An ejector (200; 300; 320; 340; 400; 430; 460; 480) has a primary inlet (40), a secondary inlet (42), and an outlet (44). A primary flowpath extends from the primary inlet (40) to the outlet (44) and a secondary flowpath extends from the secondary inlet (42) to the outlet (44), merging with the primary flowpath. A motive nozzle (100) surrounds the primary flowpath upstream of a junction with the secondary flowpath. The motive nozzle (100) has a throat (106) and an exit (110). The ejector (200; 300; 320; 340; 400; 430; 460; 480) further has a means (204, 210; 304; 322; 342; 402; 432; 462; 482) for varying an effective area of the exit (110) or simultaneously varying the effective area of the exit (110) and an effective area of the throat (106).
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: March 15, 2016
    Assignee: Carrier Corporation
    Inventors: Hongsheng Liu, Jiang Zou, Frederick J. Cogswell, Jinliang Wang, Parmesh Verma
  • Patent number: 9267696
    Abstract: An air temperature and humidity control device is provided including a first heat pump having a compressor, an expansion valve, a condenser, and an evaporator. The first heat pump has a refrigerant circulating there through. A humidity controller includes a first contactor fluidly coupled to the evaporator and condenser. The first contact includes at least one contact module having a porous sidewall that defines an internal space through which a hygroscopic material flows. A first air flow is in communication with the porous sidewall of the first contactor. The device also has a second heat pump including a first polishing coil. The first polishing coil is substantially aligned with and arranged generally downstream from the first contactor relative to the first air flow.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 23, 2016
    Assignee: CARRIER CORPORATION
    Inventors: David W. Gerlach, Sherif Kandil, Parmesh Verma, Frederick J. Cogswell, Rajiv Ranjan, Ahmad M. Mahmoud, Richard G. Lord