Patents by Inventor Frederick Wilson Wheeler

Frederick Wilson Wheeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091953
    Abstract: A method for controlling a robotic system includes determining a location and/or a pose of a power system component based on data received from one or more sensors, and determining a mapping of a location of a robotic system within a model of an external environment of the robotic system based on the data. The model of the external environment provides locations of objects external to the robotic system. A sequence of movements of components of the robotic system is determined to perform maintenance on the power system component based on the locations of the objects external to the robotic system and/or the location or pose of the power system component. One or more control signals are communicated to remotely control movement of the components of the robotic system based on the sequence or movements of the components to perform maintenance on the power system component.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11865732
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 9, 2024
    Assignee: Transportation IP Holdings, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11767821
    Abstract: The present disclosure is directed to a method for responding to a friction coefficient signal of a pitch bearing of a pitch drive mechanism of a wind turbine and/or for controlling the pitch drive mechanism(s) and/or a bank of ultracapacitors. The method and system include: accessing high-frequency measurement data of the at least one pitch bearing; estimating, via a torque balance model implemented by a controller, a frictional torque of the at least one pitch bearing based, at least in part, on the high-frequency measurement data; estimating, via the controller, a friction coefficient signal of the at least one pitch bearing based, at least in part, on the frictional torque; comparing the friction coefficient signal with a friction threshold; determining whether the friction coefficient signal deviates from the friction threshold based, at least in part, on the comparison; and, if so, acting.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: September 26, 2023
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Vidya Sagar Meesala, Misha Gupta, Pranav Agarwal, Manthram Sivasubramaniam, Justin Edwin Barton, Frederick Wilson Wheeler
  • Patent number: 11703424
    Abstract: A method for detecting anomalies during operation of an asset to improve performance of the asset includes collecting, via a server, data relating to operation of the asset or a group of assets containing the asset. The data includes normal and abnormal asset behavior of the asset or the group of assets containing the asset. Further, the method includes automatically removing, via an iterative algorithm programmed in the server that utilizes one or more inputs or outputs of an anomaly detection analytic, portions of the data containing the abnormal asset behavior to form a dataset containing only the normal asset behavior. The method also includes training, via a computer-based model programmed in the server, the anomaly detection analytic using, at least, the dataset containing only the normal asset behavior. Moreover, the method includes applying, via the server, the anomaly detection analytic to the asset so as to monitor for anomalies during operation thereof.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Dayu Huang, Frederick Wilson Wheeler, John Joseph Mihok, David C. Korim
  • Publication number: 20230167803
    Abstract: The present disclosure is directed to a method for responding to a friction coefficient signal of a pitch bearing of a pitch drive mechanism of a wind turbine and/or for controlling the pitch drive mechanism(s) and/or a bank of ultracapacitors. The method and system include: accessing high-frequency measurement data of the at least one pitch bearing; estimating, via a torque balance model implemented by a controller, a frictional torque of the at least one pitch bearing based, at least in part, on the high-frequency measurement data; estimating, via the controller, a friction coefficient signal of the at least one pitch bearing based, at least in part, on the frictional torque; comparing the friction coefficient signal with a friction threshold; determining whether the friction coefficient signal deviates from the friction threshold based, at least in part, on the comparison; and, if so, acting.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 1, 2023
    Inventors: Vidya Sagar Meesala, Misha Gupta, Pranav Agarwal, Manthram Sivasubramaniam, Justin Edwin Barton, Frederick Wilson Wheeler
  • Patent number: 11661919
    Abstract: A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 30, 2023
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Dayu Huang, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu, Dhiraj Arora, Siyun Wang
  • Patent number: 11635060
    Abstract: A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: April 25, 2023
    Assignee: General Electric Company
    Inventors: Dayu Huang, Frederick Wilson Wheeler, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu
  • Patent number: 11460006
    Abstract: A method for detecting damage in a bearing coupled to a rotating shaft of a rotary machine includes receiving one or more measurement signals from one or more first sensors for monitoring movement of the rotating shaft in one or more directions over a time period. The method also includes removing an effect of one or more environmental and/or operating conditions of the rotary machine from the one or more measurement signals over the time period. After removing, the method includes analyzing changes in the one or more measurement signals from the one or more first sensors, wherein changes in the one or more measurement signals above a predetermined threshold or of a certain magnitude are indicative of a damaged bearing. Moreover, the method includes implementing a corrective action when the changes in the one or more measurement signals are above the predetermined threshold.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 4, 2022
    Assignee: General Electric Company
    Inventors: Inderdeep Kaur, Frederick Wilson Wheeler, Michael James Rizzo, John Joseph Mihok
  • Publication number: 20220228560
    Abstract: A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Inventors: Dayu Huang, Frederick Wilson Wheeler, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu
  • Publication number: 20220228559
    Abstract: A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Inventors: Frederick Wilson Wheeler, Dayu Huang, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu, Dhiraj Arora, Siyun Wang
  • Publication number: 20210364392
    Abstract: A method for detecting anomalies during operation of an asset to improve performance of the asset includes collecting, via a server, data relating to operation of the asset or a group of assets containing the asset. The data includes normal and abnormal asset behavior of the asset or the group of assets containing the asset. Further, the method includes automatically removing, via an iterative algorithm programmed in the server that utilizes one or more inputs or outputs of an anomaly detection analytic, portions of the data containing the abnormal asset behavior to form a dataset containing only the normal asset behavior. The method also includes training, via a computer-based model programmed in the server, the anomaly detection analytic using, at least, the dataset containing only the normal asset behavior. Moreover, the method includes applying, via the server, the anomaly detection analytic to the asset so as to monitor for anomalies during operation thereof.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: Dayu Huang, Frederick Wilson Wheeler, John Joseph Mihok, David C. Korim
  • Patent number: 11136053
    Abstract: Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: October 5, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Yuri Alexeyevich Plotnikov, Brett Alexander Matthews, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Joseph Forrest Noffsinger, Samhitha Palanganda Poonacha, Tannous Frangieh, Frederick Wilson Wheeler, Brian Lee Staton, Timothy Robert Brown, Gregory Boverman, Majid Nayeri
  • Publication number: 20210252712
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20210222672
    Abstract: A wind turbine control system is disclosed. The wind turbine control system includes a wind turbine, at least one sensor configured to detect at least one environmental condition associated with the wind turbine, and a wind turbine controller communicatively coupled to the wind turbine and the at least one sensor. The wind turbine controller includes at least one processor in communication with at least one memory device. The at least one processor is configured to retrieve at least one wind condition variable associated with the wind turbine, retrieve a power curve, the power curve generated based on the at least one wind condition variable by computing, for each of a plurality of wind speed values, a power value, receive, from the at least one sensor, sensor data, and control the wind turbine using the generated power curve based on the received sensor data.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: SIYUN WANG, Leonardo Cesar Kammer, Frederick Wilson Wheeler, Dhiraj Arora
  • Patent number: 11020859
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 1, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20210033074
    Abstract: A method for detecting damage in a bearing coupled to a rotating shaft of a rotary machine includes receiving one or more measurement signals from one or more first sensors for monitoring movement of the rotating shaft in one or more directions over a time period. The method also includes removing an effect of one or more environmental and/or operating conditions of the rotary machine from the one or more measurement signals over the time period. After removing, the method includes analyzing changes in the one or more measurement signals from the one or more first sensors, wherein changes in the one or more measurement signals above a predetermined threshold or of a certain magnitude are indicative of a damaged bearing. Moreover, the method includes implementing a corrective action when the changes in the one or more measurement signals are above the predetermined threshold.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 4, 2021
    Inventors: Inderdeep Kaur, Frederick Wilson Wheeler, Michael James Rizzo, John Joseph Mihok
  • Patent number: 10697439
    Abstract: A method for evaluating performance of a wind turbine includes operating the wind turbine in a first operational mode. The method also includes generating a first set of operational data relating to the first operational mode. More specifically, the first set of operational data includes, at least, a first parameter and a second parameter. Further, the first and second parameters of the first set are measured during different time periods during the first operational mode. The method further includes changing the first operational mode to a second operational mode. Moreover, the method includes generating a second set of operational data relating to the second operational mode. The second set of operational data also includes, at least, a first parameter and a second parameter. Thus, the method includes determining a performance characteristic of the first and second operational modes based on the first and second sets of operational data.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Danian Zheng, James Huu Phan, Brian Allen Rittenhouse
  • Patent number: 10501100
    Abstract: Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 10, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Yuri Alexeyevich Plotnikov, Brett Alexander Matthews, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Joseph Forrest Noffsinger, Samhitha Palanganda Poonacha, Tannous Frangieh, Frederick Wilson Wheeler, Brian Lee Staton, Timothy Robert Brown, Gregory Boverman, Majid Nayeri
  • Patent number: 10488855
    Abstract: A system that provides localized monitoring of characteristics of instrument gas that a valve assembly uses to modulate the flow of a working fluid. The system includes components that generate an output in response to, for example, particulates, humidity, temperature, and other characteristics of the instrument gas. Processing of data and information in the output can help to diagnose changes in the characteristics of the instrument gas. This diagnosis is useful to predict a time frame during which the valve assembly and components associated therewith might fail and/or require maintenance before the valve assembly manifests significant problem that are detrimental to a process line.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 26, 2019
    Assignee: Dresser, LLC
    Inventors: Edward James Nieters, Frederick Wilson Wheeler, Harold Randall Smart
  • Publication number: 20190344814
    Abstract: Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Inventors: Yuri Alexeyevich Plotnikov, Brett Alexander Matthews, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Joseph Forrest Noffsinger, Samhitha Palanganda Poonacha, Tannous Frangieh, Frederick Wilson Wheeler, Brian Lee Staton, Timothy Robert Brown, Gregory Boverman, Majid Nayeri