Patents by Inventor Gaetan Mathieu

Gaetan Mathieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070126435
    Abstract: Probes of a probe card assembly can be adjusted with respect to an element of the probe card assembly, which can be an element of the probe card assembly that facilitates mounting of the probe card assembly to a test apparatus. The probe card assembly can then be mounted in a test apparatus, and an orientation of the probe card assembly can be adjusted with respect to the test apparatus, such as a structural part of the test apparatus or a structural element attached to the test apparatus.
    Type: Application
    Filed: December 2, 2005
    Publication date: June 7, 2007
    Applicant: FormFactor, Inc.
    Inventors: Benjamin Eldridge, Eric Hobbs, Gaetan Mathieu, Makarand Shinde, Alexander Slocum
  • Publication number: 20070126443
    Abstract: A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
    Type: Application
    Filed: January 30, 2007
    Publication date: June 7, 2007
    Inventors: Gary Grube, Igor Khandros, Benjamin Eldridge, Gaetan Mathieu
  • Publication number: 20070075715
    Abstract: An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
    Type: Application
    Filed: November 17, 2006
    Publication date: April 5, 2007
    Inventors: Igor Khandros, Benjamin Eldridge, Gaetan Mathieu, Thomas Dozier, William Smith
  • Publication number: 20070062913
    Abstract: A method of forming a probe array includes forming a layer of tip material over a block of probe material. A first electron discharge machine (EDM) electrode is positioned over the layer of tip material, the EDM electrode having a plurality of openings corresponding to a plurality of probes to be formed. Excess material from the layer of tip material and the block of probe material is removed to form the plurality of probes. A substrate having a plurality of through holes corresponding to the plurality of probes is positioned so that the probes penetrate the plurality of through holes. The substrate is bonded to the plurality of probes. Excess probe material is removed so as to planarize the substrate.
    Type: Application
    Filed: October 17, 2006
    Publication date: March 22, 2007
    Inventors: Gaetan Mathieu, Benjamin Eldridge, Gary Grube
  • Publication number: 20070054513
    Abstract: A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 8, 2007
    Inventors: Gaetan Mathieu, Benjamin Eldridge, Stuart Wenzel
  • Publication number: 20060290367
    Abstract: A probe card assembly comprises multiple probe substrates attached to a mounting assembly. Each probe substrate includes a set of probes, and together, the sets of probes on each probe substrate compose an array of probes for contacting a device to be tested. Adjustment mechanisms are configured to impart forces to each probe substrate to move individually each substrate with respect to the mounting assembly. The adjustment mechanisms may translate each probe substrate in an “x,” “y,” and/or “z” direction and may further rotate each probe substrate about any one or more of the forgoing directions. The adjustment mechanisms may further change a shape of one or more of the probe substrates. The probes can thus be aligned and/or planarized with respect to contacts on the device to be tested.
    Type: Application
    Filed: June 24, 2005
    Publication date: December 28, 2006
    Inventors: Eric Hobbs, Benjamin Eldridge, Lunyu Ma, Gaetan Mathieu, Steven Murphy, Makarand Shinde, Alexander Slocum
  • Publication number: 20060255814
    Abstract: A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
    Type: Application
    Filed: December 30, 2005
    Publication date: November 16, 2006
    Applicant: FORMFACTOR
    Inventors: Benjamin Eldridge, Gary Grube, Eric Hobbs, Gaetan Mathieu, Makarand Shinde, Alexander Slocum, A. Sporck, Thomas Watson
  • Publication number: 20060237856
    Abstract: Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate.
    Type: Application
    Filed: July 11, 2006
    Publication date: October 26, 2006
    Inventors: Benjamin Eldridge, Gary Grube, Igor Khandros, Gaetan Mathieu
  • Publication number: 20060238211
    Abstract: The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
    Type: Application
    Filed: July 3, 2006
    Publication date: October 26, 2006
    Inventors: Benjamin Eldridge, Gary Grube, Ken Matsubayashi, Richard Larder, Makarand Shinde, Gaetan Mathieu
  • Publication number: 20060223345
    Abstract: Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
    Type: Application
    Filed: June 13, 2006
    Publication date: October 5, 2006
    Inventors: Thomas Dozier, Benjamin Eldridge, Gary Grube, Igor Khandros, Gaetan Mathieu, David Pedersen, Michael Stadt
  • Publication number: 20060211234
    Abstract: Methods of fabricating an array of aligned microstructures on a substrate are disclosed. The microstructures may be spring contacts or other microelements. The methods disclosed include construction of an alignment substrate, alignment of die elements with the alignment substrate, and fixation of the aligned die elements to a backing substrate.
    Type: Application
    Filed: May 25, 2006
    Publication date: September 21, 2006
    Inventors: Benjamin Eldridge, Gaetan Mathieu
  • Publication number: 20060211278
    Abstract: An interconnection element and a method of forming an interconnection element. In one embodiment, the interconnection element includes a first structure and a second structure coupled to the first structure. The second structure coupled with the first material has a spring constant greater than the spring constant of the first structure alone. In one embodiment, the interconnection element is adapted to be coupled to an electronic component tracked as a conductive path from the electronic component. In one embodiment, the method includes forming a first (interconnection) structure coupled to a substrate to define a shape suitable as an interconnection in an integrated circuit environment and then coupling, such as by coating, a second (interconnection) structure to the first (interconnection) structure to form an interconnection element.
    Type: Application
    Filed: May 23, 2006
    Publication date: September 21, 2006
    Inventors: Gaetan Mathieu, Benjamin Eldridge
  • Publication number: 20060191136
    Abstract: A method of making a microelectronic spring contact array comprises forming a plurality of spring contacts on a sacrificial substrate and then releasing the spring contacts from the sacrificial substrate. Each of the spring contacts has an elongated beam having a base end. The method of making the array includes attaching the spring contacts at their base ends to a base substrate after they have been released entirely from the sacrificial substrate, so that each contact extends from the base substrate to a distal end of its beams. The distal ends are aligned with a predetermined array of tip positions. In an embodiment of the invention, the spring contacts are formed by patterning contours of the spring contacts in a sacrificial layer on the sacrificial substrate. The walls of patterned recesses in the sacrificial layer define side profiles of the spring contacts, and a conductive material is deposited in the recesses to form the elongated beams of the spring contacts.
    Type: Application
    Filed: May 11, 2006
    Publication date: August 31, 2006
    Inventors: Benjamin Eldridge, Gaetan Mathieu, Carl Reynolds
  • Publication number: 20060185164
    Abstract: Methods are provided for making plated through holes usable for inserting and attaching connector probes. In a first method, a curved plated through hole is formed by bonding curved etchable wires to a first substrate, plating the wires with a non-etchable conductive material, encasing the plated wires with a dielectric material to form a second substrate, planing the second substrate to expose the etchable wire, and etching the wires to leave plated through holes. In a second method, wires coated with a first etchable layer are initially bonded to a substrate, a second non-etchable plating layer is then applied over the first layer, and the first layer is etched away leaving plated through holes with wires disposed inside.
    Type: Application
    Filed: April 11, 2006
    Publication date: August 24, 2006
    Inventors: Gaetan Mathieu, Igor Khandros, Carl Reynolds
  • Publication number: 20060157839
    Abstract: Methods of fabricating an array of aligned microstructures on a substrate are disclosed. The microstructures may be spring contacts or other microelements. The methods disclosed include construction of an alignment substrate, alignment of die elements with the alignment substrate, and fixation of the aligned die elements to a backing substrate.
    Type: Application
    Filed: March 14, 2006
    Publication date: July 20, 2006
    Inventors: Benjamin Eldridge, Gaetan Mathieu
  • Publication number: 20060085976
    Abstract: Resilient spring contact structures are manufactured by plating the contact structures on a reusable mandrel, as opposed to forming the contact structures on sacrificial layers that are later etched away. In one embodiment, the mandrel includes a form or mold area that is inserted through a plated through hole in a substrate. Plating is then performed to create the spring contact on the mold area of the mandrel as well as to attach the spring contact to the substrate. In a second embodiment, the mandrel includes a form that is initially plated to form the resilient contact structure and then attached to a region of a substrate without being inserted through the substrate. Attachment in the second embodiment can be achieved during the plating process used to form the spring contact, or by using a conductive adhesive or solder either before or after releasing the spring contact from the mandrel.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Applicant: FormFactor, Inc.
    Inventors: Benjamin Eldridge, Gaetan Mathieu
  • Publication number: 20060033517
    Abstract: An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
    Type: Application
    Filed: October 19, 2005
    Publication date: February 16, 2006
    Inventors: Igor Khandros, Gaetan Mathieu
  • Publication number: 20060001440
    Abstract: The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
    Type: Application
    Filed: August 30, 2005
    Publication date: January 5, 2006
    Inventors: Rod Martens, Benjamin Eldridge, Gary Grube, Ken Matsubayashi, Richard Larder, Makarand Shinde, Gaetan Mathieu
  • Publication number: 20050277323
    Abstract: A wafer test assembly includes multiple probe head substrates arranged like tiles with connectors attached to one side and probes supported on the opposing side. In one embodiment, flexible cable connectors directly connect the connectors on the probe head tile to a test head, while in another embodiment the flexible cables connect the probe head tile to a PCB providing horizontal routing to test head connectors. In one embodiment, leveling pins provide a simplified support structure connecting to a retaining element attached to the tiles to provide for applying a push-pull leveling force. A test head connector interface frame enables rearrangement of connectors between the test head and the probe card to provide for both full wafer contact or partial wafer contact. The test head connectors are rearranged by being slidable on rails, or pluggable and unpluggable enabling movement over a range of positions.
    Type: Application
    Filed: June 15, 2004
    Publication date: December 15, 2005
    Applicant: FormFactor, Inc.
    Inventors: Benjamin Eldridge, Barbara Vasquez, Makarand Shinde, Gaetan Mathieu, A. Sporck
  • Publication number: 20050255408
    Abstract: A robust mechanical structure is provided to prevent small foundation structures formed on a substrate from detaching from the substrate surface. The strengthened structure is formed by plating a foundation metal layer on a seed layer and then embedding the plated foundation structure in an adhesive polymer material, such as epoxy. Components, such as spring probes, can then be constructed on the plated foundation. The adhesive polymer material better assures the adhesion of the metal foundation structure to the substrate surface by counteracting forces applied to an element, such as a spring probe, attached to the plated foundation.
    Type: Application
    Filed: April 26, 2004
    Publication date: November 17, 2005
    Applicant: FormFactor, Inc.
    Inventors: Gary Grube, Gaetan Mathieu, Benjamin Eldridge, Chadwick Sofield