Patents by Inventor Gee-Kung Chang

Gee-Kung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040213229
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Application
    Filed: January 30, 2001
    Publication date: October 28, 2004
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6768871
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6766114
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6760549
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757496
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757495
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6757497
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6754450
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 22, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6754449
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: June 22, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6674558
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the single-sideband modulated header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can be overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of~the network elements.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: January 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6657757
    Abstract: As optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and the data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Publication number: 20030117678
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Application
    Filed: January 30, 2001
    Publication date: June 26, 2003
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6580537
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: June 17, 2003
    Assignee: Regents of the University of California, The
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6545781
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: April 8, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6525850
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: February 25, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6525851
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the single-sideband modulated header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can be overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: February 25, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Patent number: 6522435
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the single-sideband modulated header and data payload propagate through network elements with the same path and the associated delays. The header routing information has sufficiently different characteristics from the data payload so that the signaling header can be detected without being affected by the data payload, and that the signaling header can also be removed without affecting the data payload. The signal routing technique can overlaid onto the conventional network elements in a modular manner using two types of applique modules. The first type effects header encoding and decoding at the entry and exit points of the data payload into and out of the network; the second type effects header detection at each of the network elements.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: February 18, 2003
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Winston I. Way
  • Publication number: 20020146027
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Application
    Filed: January 30, 2001
    Publication date: October 10, 2002
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Publication number: 20020146028
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Application
    Filed: January 30, 2001
    Publication date: October 10, 2002
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Publication number: 20020145785
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Application
    Filed: January 30, 2001
    Publication date: October 10, 2002
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas