Patents by Inventor Georg Roehrer

Georg Roehrer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200212245
    Abstract: The semiconductor device comprises a bipolar transistor with emitter, base and collector, a current or voltage source electrically connected with the emitter, and a quenching component electrically connected with the collector, the bipolar transistor being configured for operation at a collector-to-base voltage above the breakdown voltage.
    Type: Application
    Filed: July 18, 2018
    Publication date: July 2, 2020
    Inventors: Georg Röhrer, Robert Kappel, Nenad LILIC
  • Publication number: 20200182692
    Abstract: A avalanche diode arrangement comprises an avalanche diode (11) that is coupled to a first voltage terminal (14) and to a first node (15), a latch comparator (12) with a first input (16) coupled to the first node (15), a second input (17) for receiving a reference voltage (VREF) and an enable input (21) for receiving a comparator enable signal (CLK), and a quenching circuit (13) coupled to the first node (15).
    Type: Application
    Filed: June 19, 2018
    Publication date: June 11, 2020
    Inventors: Nenad LILIC, Robert Kappel, Georg Röhrer
  • Publication number: 20200168748
    Abstract: A single photon avalanche diode, SPAD, comprises an active area which is arranged to generate a photon triggered avalanche current. A cover is arranged on or above the active area. The cover shields the active area from incident photons. The cover comprises a stack of at least the first and a second metal layer. At least one of the metal layers, e.g. the first metal layer, comprises an aperture. The metal layers are arranged in the stack with respect to an optical axis such as to open an effective aperture along the optical axis. By way of the effective aperture a portion of the active area is exposed to incident photons being incident along the optical axis. The effective aperture is smaller than the aperture arranged in the first metal layer.
    Type: Application
    Filed: July 26, 2018
    Publication date: May 28, 2020
    Inventor: Georg Roehrer
  • Publication number: 20200152807
    Abstract: The SPAD device comprises a single-photon avalanche diode and a further single-photon avalanche diode having breakdown voltages, the single-photon avalanche diodes being integrated in the same device. The breakdown voltages are equal or differ by less than 10%. The single-photon avalanche diode is configured to enable to induce triggering or to have a dark count rate that is higher than the dark count rate of the further single-photon avalanche diode.
    Type: Application
    Filed: July 18, 2018
    Publication date: May 14, 2020
    Inventors: Georg Röhrer, Robert Kappel, Nenad LILIC
  • Publication number: 20200154544
    Abstract: The device comprises a bipolar transistor with emitter, base, collector, base-collector junction and base-emitter junction, a collector-to-base breakdown voltage, a quenching component electrically connected with the base or the collector, and a switching circuitry configured to apply a forward bias to the base-emitter junction. The bipolar transistor is configured for operation at a reverse collector-to-base voltage above the breakdown voltage.
    Type: Application
    Filed: July 18, 2018
    Publication date: May 14, 2020
    Inventors: Georg Roehrer, Robert Kappel, Nenad LILIC
  • Patent number: 10510881
    Abstract: A well of a first type of conductivity is formed in a semiconductor substrate, and wells of a second type of conductivity are formed in the well of the first type of conductivity at a distance from one another. By an implantation of dopants, a doped region of the second type of conductivity is formed in the well of the first type of conductivity between the wells of the second type of conductivity and at a distance from the wells of the second type of conductivity. Source/drain contacts are applied to the wells of the second type of conductivity, and a gate dielectric and a gate electrode are arranged above regions of the well of the first type of conductivity that are located between the wells of the second type of conductivity and the doped region of the second type of conductivity.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: December 17, 2019
    Assignee: ams AG
    Inventors: Jong Mun Park, Georg Roehrer
  • Publication number: 20190146069
    Abstract: An optical sensor arrangement for time-of-flight comprises a first and a second cavity separated by an optical barrier and covered by a cover arrangement. An optical emitter is arranged in the first cavity, a measurement and a reference photodetector are arranged in the second cavity. The cover arrangement comprises a plate and layers of material arranged on an inner main surface thereof. The layers comprise an opaque coating with a first and second aperture above the first cavity, and with a third and fourth aperture above the second cavity. The measurement photodetector is configured to detect light entering the second cavity through the fourth aperture. The second and the third aperture establish a reference path for light from the emitter to the reference photodetector.
    Type: Application
    Filed: June 2, 2017
    Publication date: May 16, 2019
    Inventors: Harald Etschmaier, Rainer Minixhofer, Georg Roehrer
  • Patent number: 10283635
    Abstract: The field effect transistor device comprises a substrate (1) of semiconductor material, a body well of a first type of electric conductivity in the substrate, a source region in the body well, the source region having an opposite second type of electric conductivity, a source contact (3) on the source region, a body contact region of the first type of electric conductivity in the body well, a body contact (5) on the body contact region, and a gate electrode layer (2) partially overlapping the body well. A portion (2*) of the gate electrode layer (2) is present between the source contact (3) and the body contact (5).
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 7, 2019
    Assignee: ams AG
    Inventors: Martin Knaipp, Georg Roehrer, Jong Mun Park
  • Publication number: 20190128975
    Abstract: A Hall sensor has at least four sensor terminals for connecting the Hall sensor and a plurality of Hall sensing element shaving element terminals. The Hall sensing elements are interconnected with the element terminals in a connection grid in between the sensor terminals, the connection having more than one dimension. The Hall sensing elements are physically arranged in an arrangement grid having more than one dimension and being different from the connection grid. At least some of the Hall sensing elements are connected to at least two adjacent Hall sensing elements in the connection grid.
    Type: Application
    Filed: June 28, 2016
    Publication date: May 2, 2019
    Inventors: András MOZSÁRY, Roswitha PUMMER, Georg ROEHRER
  • Patent number: 10234332
    Abstract: A bolometer (10) comprises a first and a second suspension beam (12, 13) and a semiconductor portion (11) that is suspended by the first and the second suspension beam (12, 13) and comprises a first region (17) of a first conductivity type and a second region (18) of a second conductivity type. The first region (17) comprises a first triangle (21) or at least two stripes (40, 41) or islands (60, 61) which each contribute to a non-short-circuited diode (20) with the second region (18).
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 19, 2019
    Assignee: ams AG
    Inventors: Georg Roehrer, Sara Carniello
  • Patent number: 10042010
    Abstract: A Hall sensor (HS) comprises at least four sensor terminals (EXT_A, EXT_B, EXT_C, EXT_D) for connecting the Hall sensor (HS) in at least two Hall sensing elements (11, 12, . . . , 44) connected together, element terminals (A, B, C, D) of the Hall sensing elements (11, 12, . . . , 44) are connected in between the sensor terminals (EXT_A, EXT_B, EXT_C, EXT_D). Each of the Hall sensing elements (11, 12, . . . , 44) is configured to provide an individual sensor value between two of its element terminals (A, B, C, D). The at least two Hall sensing elements (11, 12, . . . , 44) are distributed basically equally into two halves (B1, B2) and are connected such that a difference value is electrically formed between two of the sensor terminals (EXT_A, EXT_B, EXT_C, EXT_D) resulting from the respective individual sensor values.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: August 7, 2018
    Assignee: ams AG
    Inventor: Georg Röhrer
  • Publication number: 20180130906
    Abstract: The field effect transistor device comprises a substrate (1) of semiconductor material, a body well of a first type of electric conductivity in the substrate, a source region in the body well, the source region having an opposite second type of electric conductivity, a source contact (3) on the source region, a body contact region of the first type of electric conductivity in the body well, a body contact (5) on the body contact region, and a gate electrode layer (2) partially overlapping the body well. A portion (2*) of the gate electrode layer (2) is present between the source contact (3) and the body contact (5).
    Type: Application
    Filed: November 3, 2017
    Publication date: May 10, 2018
    Inventors: Martin KNAIPP, Georg ROEHRER, Jong Mun PARK
  • Patent number: 9935231
    Abstract: A method for manufacturing a semiconductor element comprising a single photon avalanche diode having a multiplication zone (AR) a guard ring structure with a second type of electrical conductivity comprises providing a semiconductor wafer with a first region (R) comprising a semiconductor material with the first type of conductivity. The method further comprises generating by a first doping process a first well (W1) of the guard ring structure having a first vertical depth, the first well (W1) laterally surrounding the multiplication zone (AR) and having a lateral distance (A) from the multiplication zone (AR). The method further comprises generating by a second doping process a second well (W2) of the guard ring structure having a second vertical depth, the second well (W2) laterally surrounding and adjoining a part of the first region for laterally defining the multiplication zone (AR).
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: April 3, 2018
    Assignee: AMS AG
    Inventor: Georg Roehrer
  • Patent number: 9876095
    Abstract: An isolation area (10) is provided over a drift region (12) with a spacing (d) to a contact area (4) provided for a drain connection (D). The isolation area is used as an implantation mask, in order to produce a dopant profile of the drift region in which the dopant concentration increases toward the drain. The implantation of the dopant can be performed instead before the production of the isolation area, and the later production of the isolation area (10) changes the dopant profile also in a way that the dopant concentration increases toward the drain.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: January 23, 2018
    Assignee: ams AG
    Inventor: Georg Roehrer
  • Publication number: 20170301790
    Abstract: A well of a first type of conductivity is formed in a semiconductor substrate, and wells of a second type of conductivity are formed in the well of the first type of conductivity at a distance from one another. By an implantation of dopants, a doped region of the second type of conductivity is formed in the well of the first type of conductivity between the wells of the second type of conductivity and at a distance from the wells of the second type of conductivity. Source/drain contacts are applied to the wells of the second type of conductivity, and a gate dielectric and a gate electrode are arranged above regions of the well of the first type of conductivity that are located between the wells of the second type of conductivity and the doped region of the second type of conductivity.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 19, 2017
    Inventors: Jong Mun PARK, Georg ROEHRER
  • Publication number: 20170229598
    Abstract: A method for manufacturing a semiconductor element comprising a single photon avalanche diode having a multiplication zone (AR) a guard ring structure with a second type of electrical conductivity comprises providing a semiconductor wafer with a first region (R) comprising a semiconductor material with the first type of conductivity. The method further comprises generating by a first doping process a first well (W1) of the guard ring structure having a first vertical depth, the first well (W1) laterally surrounding the multiplication zone (AR) and having a lateral distance (A) from the multiplication zone (AR). The method further comprises generating by a second doping process a second well (W2) of the guard ring structure having a second vertical depth, the second well (W2) laterally surrounding and adjoining a part of the first region for laterally defining the multiplication zone (AR).
    Type: Application
    Filed: February 8, 2017
    Publication date: August 10, 2017
    Inventor: Georg ROEHRER
  • Patent number: 9684038
    Abstract: A magnetic field sensor system has a plurality of magnetic field sensor elements, which each are configured to provide an individual sensor value, and of which a first portion is arranged in a first contiguous area and a second portion is arranged in a second contiguous area, and a coil wire arrangement with a first coil portion and at least a second coil portion being connected to the first coil portion, wherein the first coil portion is arranged close to the sensor elements of the first area and the second coil portion is arranged close to the sensor elements of the second area such that, if a predetermined current is applied to the coil wire arrangement, a first magnetic field component is generated at the first area and a second magnetic field component is generated at the second area being opposite to the first magnetic field component.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 20, 2017
    Assignee: AMS AG
    Inventors: András Mozsáry, Georg Roehrer
  • Publication number: 20170074725
    Abstract: A bolometer (10) comprises a first and a second suspension beam (12, 13) and a semiconductor portion (11) that is suspended by the first and the second suspension beam (12, 13) and comprises a first region (17) of a first conductivity type and a second region (18) of a second conductivity type. The first region (17) comprises a first triangle (21) or at least two stripes (40, 41) or islands (60, 61) which each contribute to a non-short-circuited diode (20) with the second region (18).
    Type: Application
    Filed: November 2, 2016
    Publication date: March 16, 2017
    Inventors: Georg ROEHRER, Sara CARNIELLO
  • Patent number: 9575141
    Abstract: A Hall sensor comprises at least three Hall sensor elements (1, 2, . . . , 94) that respectively comprise at least three element terminals (A, B, C, D, E, F, G, H) and are interconnected in a circuit grid with a structure that is more than one-dimensional, as well as at least three sensor terminals (EXT_A, EXT_B, EXT_C, EXT_D) for contacting the Hall sensor. In this case, each sensor terminal (EXT_A, EXT_B, EXT_C, EXT_D) is connected to at least one of the Hall sensor elements (1, 2, . . . , 94) at one of its element terminals (A, B, C, D, E, F, G, H).
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 21, 2017
    Assignee: AMS AG
    Inventor: Georg Röhrer
  • Patent number: 9551765
    Abstract: According to a method for operating a Hall sensor assembly, at least two values (I1, I2) of an input signal (I) of a Hall sensor (11) of the Hall sensor assembly (10) having different magnitudes are set and the associated values (V1, V2) of an output signal (V) of the Hall sensor (11) are determined. Furthermore, a residual offset value (k, VOFF) of the output signal (V) is determined according to the values (V1, V2) of the output signal (V) that were determined at the at least two values (I1, I2) of the input signal (I).
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: January 24, 2017
    Assignee: AMS AG
    Inventors: Georg Röhrer, Gerhard Oberhoffner