Patents by Inventor Gerald E. Loeb

Gerald E. Loeb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6219580
    Abstract: A cochlear implant system includes an implant portion and an external portion. The external portion performs at least the function of sensing acoustic signals and converting such sensed signals to electrical signals. The implant portion performs at least the function of generating electrical stimuli, modulated and classified in response to the sensed acoustic signals, and intended for direct electrical stimulation of the auditory nerve in accordance with a selected speech processing strategy. Control data defines the selected speech processing strategy, i.e., the pulsatile stimulation pattern to be used by implantable portion. Such control data is transmitted to and stored within the implantable portion of the system only once, when a particular speech processing strategy is selected, thereby eliminating the need to continually resend such speech-processing-defining data over a bandwidth-limited link between the implantable and external portions of the system.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: April 17, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Michael A. Faltys, Gerald E. Loeb, Logan P. Palmer, Andrew W. Voelkel
  • Patent number: 6214032
    Abstract: Improved implantable microstimulators are covered with a biocompatible polymeric coating in order to provide increased strength to the capsule and to capture fragments of the microstimulator should it become mechanically disrupted. Such coating also makes the microstimulator safer and easier to handle. The coating may include one or more diffusible chemical agents that are released in a controlled manner into the surrounding tissue. The chemical agents, such as trophic factors, antibiotics, hormones, neurotransmitters and other pharmaceutical substances, are selected to produce desired physiological effects, to aid, support or to supplement the effects of the electrical stimulation. Further, microstimulators in accordance with the invention provide systems that prevent and/or treat various disorders associated with prolonged inactivity, confinement or immobilization of one or more muscles. Such disorders include pressure ulcers, venous emboli, autonomic dysreflexia, sensorimotor spasticity and muscle atrophy.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: April 10, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Frances J. R. Richmond
  • Patent number: 6185455
    Abstract: Improved implantable microstimulators are covered with a biocompatible polymeric coating in order to provide increased strength to the capsule and to capture fragments of the microstimulator should it become mechanically disrupted. Such coating also makes the microstimulator safer and easier to handle. The coating may include one or more diffusible chemical agents that are released in a controlled manner into the surrounding tissue. The chemical agents, such as trophic factors, antibiotics, hormones, neurotransmitters and other pharmaceutical substances, are selected to produce desired physiological effects, to aid, support or to supplement the effects of the electrical stimulation. Further, microstimulators in accordance with the invention provide systems that prevent and/or treat various disorders associated with prolonged inactivity, confinement or immobilization of one or more muscles. Such disorders include pressure ulcers, venous emboli, autonomic dysreflexia, sensorimotor spasticity and muscle atrophy.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: February 6, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Frances J. R. Richmond
  • Patent number: 6181965
    Abstract: Improved implantable microstimulators are covered with a biocompatible polymeric coating in order to provide increased strength to the capsule and to capture fragments of the microstimulator should it become mechanically disrupted. Such coating also makes the microstimulator safer and easier to handle. The coating may include one or more diffusible chemical agents that are released in a controlled manner into the surrounding tissue. The chemical agents, such as trophic factors, antibiotics, hormones, neurotransmitters and other pharmaceutical substances, are selected to produce desired physiological effects, to aid, support or to supplement the effects of the electrical stimulation. Further, microstimulators in accordance with the invention provide systems that prevent and/or treat various disorders associated with prolonged inactivity, confinement or immobilization of one or more muscles. Such disorders include pressure ulcers, venous emboli, autonomic dysreflexia, sensorimotor spasticity and muscle atrophy.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: January 30, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Frances J. R. Richmond
  • Patent number: 6175764
    Abstract: Improved implantable microstimulators are covered with a biocompatible polymeric coating in order to provide increased strength to the capsule and to capture fragments of the microstimulator should it become mechanically disrupted. Such coating also makes the microstimulator safer and easier to handle. The coating may include one or more diffusible chemical agents that are released in a controlled manner into the surrounding tissue. The chemical agents, such as trophic factors, antibiotics, hormones, neurotransmitters and other pharmaceutical substances, are selected to produce desired physiological effects, to aid, support or to supplement the effects of the electrical stimulation. Further, microstimulators in accordance with the invention provide systems that prevent and/or treat various disorders associated with prolonged inactivity, confinement or immobilization of one or more muscles. Such disorders include pressure ulcers, venous emboli, autonomic dysreflexia, sensorimotor spasticity and muscle atrophy.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: January 16, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Frances J. R. Richmond
  • Patent number: 6157861
    Abstract: A self-adjusting implantable cochlear implant system (46) includes an implant portion (50) and an external portion (53). The system provides a device and a way to objectively determine selected psychophysical parameters, such as stimulation threshold, comfort level and loudness resolution, used by the implant portion, which includes an implantable cochlear stimulator (ICS), as it carries out its stimulation function. The input to the system is an electrical stimulation. The outputs of the system include a middle ear reflex (MER) and evoked potentials, such as a compound action potential (CAP) along the auditory/cerebral pathways, both of which are sensed using objective measurement techniques and tools. In accordance with one embodiment, the adjustment process uses the MER for determining a coarse threshold value, and then (using such coarse threshold value as a starting point) uses evoked potentials to determine a more precise o fine threshold value, thereby zeroing in on a desired threshold.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: December 5, 2000
    Assignee: Advanced Bionics Corporation
    Inventors: Michael A. Faltys, Gerald E. Loeb
  • Patent number: 6112124
    Abstract: An electrode array (10, 10') for stimulation of the cochlea includes an elongated tapered carrier (15) on which a multiplicity of separately controlled electrode contacts (20) are carried. A set of flexible fins (100, 110, 120) or bumps (120') or other dielectric members extend from the carrier in particular axes so as to cause the outside dimension of the array plus the dielectric members to readily fit within the cavity wherein the array is to be inserted. The dielectric members are made from compliant, dielectric material. When formed as fins, the dielectric members can be folded against the body of the carrier as it is inserted into the cochlea so that they readily slide past obstructions and accommodate variations in the cross-sectional dimensions of the cavity, e.g., the scala tympani (5) with only modest insertion forces.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: August 29, 2000
    Assignee: Advanced Bionics Corporation
    Inventor: Gerald E. Loeb
  • Patent number: 6061596
    Abstract: A system and method for conditioning pelvic muscle tissue for the purpose of treating urinary incontinence uses one or more tiny implantable stimulators (20)--termed "microstimulators"--implanted in or near certain pelvic structures so as to contact target muscle tissue. The microstimulators (20) are small enough to allow their implantation using a hypodermic needle (104). Once implanted, the microstimulators (20) are controlled using a controller (105, 106) and an appropriate coupling coil (102) that couples modulated radio frequency (RF) power into the microstimulators. A fitting station (110) facilitates adjusting the stimulus pattern and amplitude to best meet the needs of a given patient. Once fitted, electrical stimulation is thus provided to the target tissue in accordance with a specified externally-controlled exercise or other regime.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: May 9, 2000
    Assignee: Advanced Bionics Corporation
    Inventors: Frances J. R. Richmond, Gerald E. Loeb
  • Patent number: 6051017
    Abstract: Improved implantable microstimulators covered with a biocompatible polymeric coating in order to provide increased strength to the capsule thereof and to capture fragments of the microstimulator should it become mechanically disrupted and to make the microstimulator safer and easier to handle are provided here. The coating may include one or more diffusible chemical agents that are released in a controlled manner into the surrounding tissue. The chemical agents, such as trophic factors, antibiotics, hormones, neurotransmitters and other pharmaceutical substances, are selected to produce desired physiological effects, to aid, support or to supplement the effects of the electrical stimulation. Further, provided herein are systems employing the improved microstimulators to prevent and/or treat various disorders associated with prolonged inactivity, confinement or immobilization of one or more muscles.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: April 18, 2000
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Frances J. R. Richmond
  • Patent number: 6002966
    Abstract: A method and system provides a wide range of temporospatial patterns of electrical stimulation waveforms to be readily specified for respective channels of a multichannel cochlear prosthesis. The cochlear prosthesis includes a speech processor system and a cochlear stimulator. The speech processor system typically includes an external headpiece, including a microphone, coupled to a speech processor. The speech processor includes electronic circuitry, typically including a microprocessor, that converts acoustical signals sensed through the microphone to electrical signals, and processes the electrical signals in accordance with a desired speech processing strategy. The definition of simple or complex stimulation waveforms to be used as part of the selected speech processing strategy is facilitated, in a preferred embodiment, through the use of a template table stored in the speech processor. The rows and columns of the template table define time intervals and stimulation channels (and hence stimulation sites).
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: December 14, 1999
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Michael A. Faltys
  • Patent number: 5957958
    Abstract: An implant stimulator device uses tantalum and tantalum pentoxide as a system for the conveyance of electrical stimulation pulses from stimulus-forming circuitry contained within an hermetic enclosure to the saline fluids of body tissue to be stimulated. Internal coupling capacitors are not used, yet the danger of having DC current flow to the saline fluids is eliminated. A preferred embodiment provides a multiplicity of electrode contacts made from sintered, anodized tantalum, connected via tantalum wire leads to tantalum feedthroughs into the hermetically sealed package containing the stimulus pulse-forming electronic circuitry. One or more counter electrode contacts (for monopolar or bipolar configurations, respectively) made of activated iridium, non-activated iridium, iridium in combination with a noble or non-noble metal, platinum, gold, or other metal which forms a low impedance contact with body fluids, is/are connected via platinum or other conductive metal leads to return feedthroughs.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: September 28, 1999
    Assignees: Advanced Bionics Corporation, Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Gerald E. Loeb, Francis J. R. Richmond
  • Patent number: 5833714
    Abstract: An implant device uses tantalum and tantalum pentoxide as a complete system for the conveyance of electrical stimulation pulses from stimulus-forming circuitry contained within an hermetic enclosure to the saline fluids of the cochlea (or other tissue to be stimulated). Internal coupling capacitors are not used, yet the danger of having DC current flow to the saline fluids is eliminated. A preferred embodiment is a cochlear prosthesis comprised of a multiplicity of electrode contacts made from sintered, anodized tantalum, connected via tantalum wire leads to tantalum feedthroughs into the hermetically sealed package containing the stimulus pulse-forming electronic circuitry. One or more counterelectrode contacts (for monopolar or bipolar configurations, respectively) consist of activated iridium, connected via platinum or other noble metal leads to noble metal feedthroughs.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: November 10, 1998
    Inventor: Gerald E. Loeb
  • Patent number: 5749912
    Abstract: A low-cost, four-channel cochlear stimulation system utilizes a completely passive, implantable receiver/electrode array that is inductively coupled to an external wearable processor. The receiver/electrode array is formed in a silicone rubber carrier adapted to be implanted in a deaf patient. At one end of the receiver/electrode array, positioned subcutaneously near the surface of skin above the ear, four receiving coils are arranged in an appropriate pattern. Such receiving coils are held within an hermetically-sealed titanium case. At the other end of the receiver/electrode array, which may be pre-formed in a spiral to match the basal turn of the cochlea, and which is inserted in the cochlea, four ball electrodes are spaced apart along an inner radius of the spiral. Each electrode is electrically connected to a respective receiving coil. Each receiving coil is also electrically connected to a reference electrode typically located near the receiver-coil end of the array.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: May 12, 1998
    Assignees: House Ear Institute, Advanced Bionics Corporation
    Inventors: Chaoying Zhang, Franco Portillo, Fan-Gang Zeng, Robert V. Shannon, Gerald E. Loeb
  • Patent number: 5649970
    Abstract: An electrode array for implantation in volume-conductive media, such as living tissue, includes at least two closely spaced metal contacts, with arbitrary shapes, having large enough surface areas to preclude one or both from acting as a "point source." Through proper control of the shape of the contacts, and the impedance ratio between the metal-electrolyte interface and the intervening volume-conductive media, achieved through use of appropriate materials for the metal contacts in combination with electronic adjustment of the voltage pulse applied between the contacts, desirable "edge-effect" fields are created that better control and manage the distribution of the resulting stimulation current flowing between the contacts. Such control of the stimulation current distribution allows a given electrode array to be electronically tuned to better stimulate specific neurons found within the tissue.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: July 22, 1997
    Inventors: Gerald E. Loeb, Helen Ruddy
  • Patent number: 5601617
    Abstract: A method and system of readily specifying a wide range of temporospatial patterns of electrical stimulation waveforms that can be used by an implantable cochlear prosthesis. Such stimulation patterns and waveforms can thus be readily tested by an audiologist in the process of fitting the cochlear prosthesis, allowing desirable patterns of pulsatile stimuli of almost arbitrary complexity to be modulated in real-time by the acoustic signal to produce useful perceptions of sound in otherwise deaf patients. The cochlear prosthesis includes two main components: (1) an external system, and (2) an implantable system. The external system includes electronic circuitry, typically including a microprocessor, that converts sensed acoustical signals to electrical signals and processes the electrical signals in accordance with a desired speech processing strategy. The present invention facilitates the definition of complex stimulation waveforms to be used as part of the selected speech processing strategy.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: February 11, 1997
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Michael A. Faltys
  • Patent number: 5571148
    Abstract: A multichannel stimulation system includes a plurality of implantable microminiature stimulators (microstimulators), each being connected to a respective implanted electrode or electrode array. Each microstimulator is selectively operable as controlled by an external (non-implanted) control unit. The electrode or electrode array is implanted so as to contact nerves and/or tissue that is to be stimulated. Operating power is inductively coupled from the control unit to the microstimulators. An information signal is also coupled to the microstimulators to control which of the microstimulators is to be activated to provide a stimulation pulse to its respective electrode. In one embodiment, the invention provides a cochlear prosthesis with an intracochlear electrode array being implanted within the human cochlea, and with selected electrodes of the array being connected to individual ones of the plurality of microstimulators.
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: November 5, 1996
    Inventors: Gerald E. Loeb, Joseph H. Schulman
  • Patent number: 5549658
    Abstract: A low-cost, multichannel cochlear stimulation system utilizes a passive, non-hermetically sealed, implantable receiver/electrode array and an external wearable processor. At one end of the receiver/electrode array, positioned subcutaneously near the surface of skin above the ear, multiple receiving coils are arranged in an appropriate pattern. At the other end, which is adapted for insertion into the spiral-shaped cochlea, electrodes are spaced apart along the spiral. Each electrode is electrically connected to a respective receiving coil in a monopolar or bipolar fashion. The wearable processor senses audible sounds, converts the sensed sounds to corresponding electrical signals, and divides the electrical signals into multiple frequency bands or channels. A continuous interleaved sampling (CIS) speech processing strategy applies the processed signals of each channel to each of multiple external coils, one coil for each channel, as a series of narrow, rapid, biphasic current pulses.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: August 27, 1996
    Assignees: Advanced Bionics Corporation, House Ear Institute
    Inventors: Robert V. Shannon, Gerald E. Loeb, Fan-Gang Zeng
  • Patent number: 5551016
    Abstract: In monitoring systems for acquiring data about a subject, such as are used, for example, in the medical, scientific and engineering fields, determination of temporal relationships between data acquired from multiple monitoring devices is facilitated by means of an interface unit which interconnects the monitoring devices with tape recorders for storing the data and a computer for processing the data. The interface unit generates various timing and control signals including a time code signal. The interface unit supplies the time code signal to the recording devices for recording simultaneously with the data. The time code signal may be a linear time code (LTC) derived from a video sync signal generated by the interface unit for synchronizing a camera. A sampling clock signal for controlling digitizing of the analog data acquired by the system is derived from the time code signal.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: August 27, 1996
    Assignee: Queen's University at Kingston
    Inventors: Gerald E. Loeb, Roy A. Young, Kevin H. Hood
  • Patent number: 5524338
    Abstract: Microelectrodes for use in stimulating and detecting activity in neurons of living organisms, and a method of manufacturing such microelectrodes. An electrically conductive electrode core member is sharpened and coated with a thin layer of a dielectric material. An extremely small area of the core at the sharpened point is exposed by ablating the dielectric material by the use of ultraviolet laser beam scanned over the material. Multiconductor microelectrodes include multiple fine wires which may be arranged in helical strands, optionally supported by a central core member of stiffer material. Multiple conductors may also be supported within a tubular support such as a hollow needle whose distal end is cut at a slant to expose the conductors, or in flat ribbon configuration with openings in dielectric material defining active electrode sites.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: June 11, 1996
    Assignee: PI Medical Corporation
    Inventors: Jerry Martyniuk, Scott S. Corbett, III, Gerald E. Loeb, Klaus Mewes, W. Eugene Skiens, John J. Stobie, Doris A. Beck
  • Patent number: 5515848
    Abstract: A miniature, electrically-insulated multi-conductor electrical cable suitable for implantation in living bodies and readily connected to sensors or electrodes, and implantable microelectrodes attached to such cables. Individual electrical conductors are coated with at least one layer of, insulating material and stranded together, or optionally bound together by an additional layer of insulating material which is compatible with implantation in living bodies. The individual conductors are separated from one another in terminal portions of the cable and are held by a ribbonizing resin at a predetermined pitch to facilitate connection of each of the conductors. The terminal portions may define microelectrodes. Another microelectrode includes an electrically conductive electrode core member sharpened and coated with a thin layer of a dielectric material.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 14, 1996
    Assignee: PI Medical Corporation
    Inventors: Scott S. Corbett, III, Jerry Martyniuk, Gerald E. Loeb, Klaus Mewes, W. Eugene Skiens, John J. Stobie, Doris A. Beck