Patents by Inventor Gerald M. Edelman

Gerald M. Edelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10017786
    Abstract: Provided herein are methods for stable integration and/or expression of one or more recombinant polynucleotides in a host cell. The recombinant polynucleotides are typically integrated into the host genome at some native chromosomal integration sites. The integration can be mediated by homologous recombination or by using a hybrid recombinase targeting the specific chromosomal locations. The native chromosomal integration sites in the host cells, which support stable integration and strong transcription activities of foreign genes, are present within or adjacent to specific genes in the CHO genome, the ankyrin 2 gene (Ank2), cleavage and polydenylation specific factor 4 gene (Cpsf4), C-Mos gene, and Nephrocystin-1/Mal gene. Also provided are methods and nucleic acid molecules for inserting site-specific recombination sequences (chromosomal landing pads) into these specific chromosomal locations, engineered host cells containing chromosomal landing pads, methods and compositions (e.g., kits) therefore.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: July 10, 2018
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Wei Zhou, Bruce Cunningham, Gerald M. Edelman
  • Patent number: 9493768
    Abstract: A translation enhancer-driven positive feedback vector system is disclosed which is designed to facilitate identification of a Translational Enhancer Element (TEE) and to provide a means for overexpression of gene products. The system exploits both transcriptional and translational approaches to control the expression levels of genes and/or gene products. Methods are also disclosed for screening libraries of random nucleotide sequences to identify translational elements and for overproduction of proteins, which have uses in both research and industrial environments.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: November 15, 2016
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Patent number: 9359616
    Abstract: Provided herein is a synthetic or isolated polynucleotide encoding a mammalian 18S rRNA that is resistant to pactamycin. The pactamycin-resistance is conferred by one or more single residue substitutions in the 18S rRNA sequence; a fragment thereof harboring said substitutions; a complementary sequence thereto; or a substantially identical sequence of the foregoing. Related systems, methods and kits are also described.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: June 7, 2016
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Luke Burman, Gerald M. Edelman
  • Publication number: 20150267190
    Abstract: A translation enhancer-driven positive feedback vector system is disclosed which is designed to facilitate identification of a Translational Enhancer Element (TEE) and to provide a means for overexpression of gene products. The system exploits both transcriptional and translational approaches to control the expression levels of genes and/or gene products. Methods are also disclosed for screening libraries of random nucleotide sequences to identify translational elements and for overproduction of proteins, which have uses in both research and industrial environments.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 24, 2015
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Patent number: 9074220
    Abstract: A translation enhancer-driven positive feedback vector system is disclosed which is designed to facilitate identification of a Translational Enhancer Element (TEE) and to provide a means for overexpression of gene products. The system exploits both transcriptional and translational approaches to control the expression levels of genes and/or gene products. Methods are also disclosed for screening libraries of random nucleotide sequences to identify translational elements and for overproduction of proteins, which have uses in both research and industrial environments.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: July 7, 2015
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Patent number: 9068197
    Abstract: A translation enhancer-driven positive feedback vector system is disclosed which is designed to facilitate identification of a Translational Enhancer Element (TEE) and to provide a means for overexpression of gene products. The system exploits both transcriptional and translational approaches to control the expression levels of genes and/or gene products. Methods are also disclosed for screening libraries of random nucleotide sequences to identify translational elements and for overproduction of proteins, which have uses in both research and industrial environments.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: June 30, 2015
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Publication number: 20150152437
    Abstract: Provided herein are methods for stable integration and/or expression of one or more recombinant polynucleotides in a host cell. The recombinant polynucleotides are typically integrated into the host genome at some native chromosomal integration sites. The integration can be mediated by homologous recombination or by using a hybrid recombinase targeting the specific chromosomal locations. The native chromosomal integration sites in the host cells, which support stable integration and strong transcription activities of foreign genes, are present within or adjacent to specific genes in the CHO genome, ankyrin 2 gene (Ank2), cleavage and polyadenylation specific factor 4 gene (Cpsf4), C-Mos gene, and Nephrocystin-1/Mal gene. Also provided are methods and nucleic acid molecules for inserting site-specific recombination sequences (chromosomal landing pads) into these specific chromosomal locations.
    Type: Application
    Filed: February 12, 2015
    Publication date: June 4, 2015
    Inventors: Vincent P. Mauro, Wei Zhou, Bruce Cunningham, Gerald M. Edelman
  • Patent number: 8980579
    Abstract: Provided herein are methods for stable integration and/or expression of one or more recombinant polynucleotides in a host cell. The recombinant polynucleotides are typically integrated into the host genome at some native chromosomal integration sites. The integration can be mediated by homologous recombination or by using a hybrid recombinase targeting the specific chromosomal locations. The native chromosomal integration sites in the host cells, which support stable integration and strong transcription activities of foreign genes, are present within or adjacent to specific genes in the CHO genome, the ankyrin 2 gene (Ank2), cleavage and polydenylation specific factor 4 gene (Cpsf4), C-Mos gene, and Nephrocystin-1/Mal gene. Also provided are methods and nucleic acid molecules for inserting site-specific recombination sequences (chromosomal landing pads) into these specific chromosomal locations, engineered host cells containing chromosomal landing pads, methods and compositions (e.g., kits) therefore.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: March 17, 2015
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Wei Zhou, Bruce Cunningham, Gerald M. Edelman
  • Publication number: 20140370545
    Abstract: Described herein are rules to modify natural mRNAs or to engineer synthetic mRNAs to increase their translation efficiencies. These rules describe modifications to mRNA coding and 3? UTR sequences intended to enhance protein synthesis by: 1) decreasing ribosomal diversion via AUG or non-canonical initiation codons in coding sequences, and/or 2) by evading miRNA-mediated down-regulation by eliminating one or more miRNA binding sites in coding sequences.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventors: Vincent P. Mauro, Stephen A. Chappell, Wei Zhou, Gerald M. Edelman
  • Patent number: 8853179
    Abstract: Described herein are rules to modify natural mRNAs or to engineer synthetic mRNAs to increase their translation efficiencies. These rules describe modifications to mRNA coding and 3? UTR sequences intended to enhance protein synthesis by: 1) decreasing ribosomal diversion via AUG or non-canonical initiation codons in coding sequences, and/or 2) by evading miRNA-mediated down-regulation by eliminating one or more miRNA binding sites in coding sequences.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 7, 2014
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Stephen A. Chappell, Wei Zhou, Gerald M. Edelman
  • Patent number: 8785611
    Abstract: Provided are mRNA translational enhancer elements (TEEs), e.g., SEQ ID NOs:1-35. Also provided are translational enhancer polynucleotides that comprise one or more of the specific TEEs exemplified herein or their variants, homologs or functional derivatives. Further provided are expression vectors comprising such TEEs or translational enhancer polynucleotides, as well as host cells and expression systems that harbor such vectors.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: July 22, 2014
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Publication number: 20130309682
    Abstract: Provided herein is a synthetic or isolated polynucleotide encoding a mammalian 18S rRNA that is resistant to pactamycin. The pactamycin-resistance is conferred by one or more single residue substitutions in the 18S rRNA sequence; a fragment thereof harboring said substitutions; a complementary sequence thereto; or a substantially identical sequence of the foregoing. Related systems, methods and kits are also described.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 21, 2013
    Inventors: Vincent P. Mauro, Luke Burman, Gerald M. Edelman
  • Patent number: 8583286
    Abstract: A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 12, 2013
    Assignee: Neurosciences Research Foundation, Inc.
    Inventors: Jason G. Fleischer, Botond Szatmáry, Donald B. Hutson, Douglas A. Moore, James A. Snook, Gerald M. Edelman, Jeffrey L. Krichmar
  • Publication number: 20130274919
    Abstract: A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. The brain-based device BBD is moveable, in a rich real-world environment involving continual changes in the size and location of visual stimuli due to self-generated or autonomous, movement, and shows that reentrant connectivity and dynamic synchronization provide an effective mechanism for binding the features of visual objects so as to reorganize object features such as color, shape and motion while distinguishing distinct objects in the environment.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 17, 2013
    Inventors: Anil K. Seth, Jeffrey L. McKinstry, Gerald M. Edelman, Jeffrey L. Krichmar
  • Patent number: 8350020
    Abstract: Provided are mRNA translational enhancer elements (TEEs), e.g., SEQ ID NOs:1-35. Also provided are translational enhancer polynucleotides that comprise one or more of the specific TEEs exemplified herein or their variants, homologs or functional derivatives. Further provided are expression vectors comprising such TEEs or translational enhancer polynucleotides, as well as host cells and expression systems that harbor such vectors.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 8, 2013
    Assignee: The Scripps Research Institute
    Inventors: Vincent P. Mauro, Gerald M. Edelman, Wei Zhou
  • Publication number: 20120258541
    Abstract: Provided herein are methods for stable integration and/or expression of one or more recombinant polynucleotides in a host cell. The recombinant polynucleotides are typically integrated into the host genome at some native chromosomal integration sites. The integration can be mediated by homologous recombination or by using a hybrid recombinase targeting the specific chromosomal locations. The native chromosomal integration sites in the host cells, which support stable integration and strong transcription activities of foreign genes, are present within or adjacent to specific genes in the CHO genome, ankyrin 2 gene (Ank2), cleavage and polyadenylation specific factor 4 gene (Cpsf4), C-Mos gene, and Nephrocystin-1/Mal gene. Also provided are methods and nucleic acid molecules for inserting site-specific recombination sequences (chromosomal landing pads) into these specific chromosomal locations, engineered host cells containing chromosomal landing pads, methods and compositions (e.g., kits) therefore.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Inventors: Vincent P. Mauro, Wei Zhou, Bruce Cunningham, Gerald M. Edelman
  • Patent number: 8285657
    Abstract: A brain-based device (BBD) having a physical mobile device NOMAD controlling and under control by a simulated nervous system. The simulated nervous system is based on an intricate anatomy and physiology of the hippocampus and its surrounding neuronal regions including the cortex. The BBD integrates spatial signals from numerous objects in time and provides flexible navigation solutions to aid in the exploration of unknown environments. As NOMAD navigates in its real world environment, the hippocampus of the simulated nervous system organizes multi-modal input information received from sensors on NOMAD over timescales and uses this organization for the development of spatial and episodic memories necessary for navigation.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 9, 2012
    Assignee: Neuroscience Research Foundation, Inc.
    Inventors: Gerald M. Edelman, Jeffrey L. Krichmar, Douglas A. Nitz
  • Publication number: 20120209432
    Abstract: A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 16, 2012
    Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC.
    Inventors: Jason G. Fleischer, Botond Szatmary, Donald B. Hutson, Douglas A. Moore, James A. Snook, Gerald M. Edelman, Jeffrey L. Krichmar
  • Publication number: 20120173020
    Abstract: A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. The brain-based device BBD is moveable, in a rich real-world environment involving continual changes in the size and location of visual stimuli due to self-generated or autonomous, movement, and shows that reentrant connectivity and dynamic synchronization provide an effective mechanism for binding the features of visual objects so as to reorganize object features such as color, shape and motion while distinguishing distinct objects in the environment.
    Type: Application
    Filed: November 30, 2011
    Publication date: July 5, 2012
    Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC.
    Inventors: Anil K. Seth, Jeffrey L. McKinstry, Gerald M. Edelman, Jeffrey L. Krichmar
  • Patent number: 8131658
    Abstract: A mobile brain-based device (BBD) includes a mobile platform with sensors and effectors, which is guided by a simulated nervous system that is an analogue of the cerebellar areas of the brain used for predictive motor control to determine interaction with a real-world environment. The simulated nervous system has neural areas including precerebellum nuclei (PN), Purkinje cells (PC), deep cerebellar nuclei (DCN) and an inferior olive (IO) for predicting turn and velocity control of the BBD during movement in a real-world environment. The BBD undergoes training and testing, and the simulated nervous system learns and performs control functions, based on a delayed eligibility trace learning rule.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 6, 2012
    Assignee: Neurosciences Research Foundation, Inc.
    Inventors: Jeffrey L. McKinstry, Gerald M. Edelman, Jeffrey L. Krichmar