Patents by Inventor Gerald R. Talbot

Gerald R. Talbot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200192853
    Abstract: A link controller includes a Peripheral Component Interconnect Express (PCIe) physical layer circuit for coupling to a communication link and providing a data path over the communication link, a first data link layer controller which operates according to a PCIe protocol, and a second data link layer controller which operates according to a Gen-Z protocol. A multiplexer-demultiplexer selectively connects both data link layer controllers to the PCIe physical layer circuit. A protocol translation circuit is coupled between the multiplexer-demultiplexer and the second data link layer controller, the protocol translation circuit receiving traffic data from the second data link layer controller in a Gen-Z format, encapsulating the Gen-Z format in a PCIe format, and passing traffic data to the multiplexer-demultiplexer circuit.
    Type: Application
    Filed: May 30, 2019
    Publication date: June 18, 2020
    Applicants: ATI Technologies ULC, Advanced Micro Devices, Inc.
    Inventors: Gordon Caruk, Maurice B. Steinman, Gerald R. Talbot, Joseph D. Macri
  • Publication number: 20200192852
    Abstract: An interconnect controller includes a data link layer controller coupled to a transaction layer, wherein the data link layer controller selectively receives data packets from and sends data packets to the transaction layer, and a physical layer controller coupled to the data link layer controller and to a communication link. The physical layer controller selectively operates at a first predetermined link speed. The physical layer controller has an enhanced speed mode, wherein in response to performing a link initialization, the interconnect controller queries a data processing platform to determine whether the enhanced speed mode is permitted, performs at least one setup operation to select an enhanced speed, wherein the enhanced speed is greater than the first predetermined link speed, and subsequently operates the communication link using the enhanced speed.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Applicants: ATI Technologies ULC, Advanced Micro Devices, Inc.
    Inventors: Gordon Caruk, Gerald R. Talbot
  • Publication number: 20200192850
    Abstract: A link controller, method, and data processing platform are provided with dual-protocol capability. The link controller includes a physical layer circuit for providing a data lane over a communication link, a first data link layer controller which operates according to a first protocol, and a second data link layer controller which operates according to a second protocol. A multiplexer/demultiplexer selectively connects both data link layer controllers to the physical layer circuit. A link training and status state machine (LTSSM) selectively controls the physical layer circuit to transmit and receive first training ordered sets over the data lane, and inside the training ordered sets, transmit and receive alternative protocol negotiation information over the data lane. In response to receiving the alternative protocol negotiation information, the LTSSM causes the multiplexer/demultiplexer to selectively connect the physical layer circuit to the second data link layer controller.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Applicants: ATI Technologies ULC, Advanced Micro Devices, Inc.
    Inventors: Gordon Caruk, Gerald R. Talbot
  • Patent number: 10636736
    Abstract: An integrated circuit assembly includes an integrated circuit package substrate and a conductive land pad disposed on a surface of the integrated circuit package substrate. The conductive land pad comprises a conductor portion, an isolated conductor portion, and an isolation portion disposed between the conductor portion and the isolated conductor portion. The isolated conductor portion may surround a first side of the conductor portion and a second side of the conductor portion. The isolated conductor portion may surround a portion of a perimeter of the conductor portion. The isolation portion may include a gap between the conductor portion and the isolated conductor portion. The gap may have a width smaller than a radius of an interconnect structure of a receiving structure.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 28, 2020
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sanjay Dandia, Gerald R. Talbot, Mahesh S. Hardikar
  • Publication number: 20200098399
    Abstract: Systems, apparatuses, and methods for performing efficient data transfer in a computing system are disclosed. A termination voltage generator includes an inverter-based chopper circuit, which uses a first group of an even number of serially connected inverters coupled between the output node of the chopper circuit and the gate terminal of an output pmos transistor. Additionally, a second group of an even number of serially connected inverters is coupled between the output node and the gate terminal of an output nmos transistor. A replica inverter includes two serially connected pmos transistors and two serially connected nmos transistors. Each of one pmos transistor and one nmos transistor receives a generated voltage set as the expected value of the termination voltage. Each of the other pmos transistor and nmos transistor receives an output based on a comparison between the expected value to the output of the replica inverter.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Milam Paraschou, Balwinder Singh, Gerald R. Talbot, Alushulla Jack Ambundo, Edoardo Prete, Thomas H. Likens, III, Michael A. Margules
  • Publication number: 20200099406
    Abstract: Systems, apparatuses, and methods for performing efficient data transfer in a computing system are disclosed. A computing system includes multiple transmitters sending singled-ended data signals to multiple receivers. A termination voltage is generated and sent to the multiple receivers. The termination voltage is coupled to each of signal termination circuitry and signal sampling circuitry within each of the multiple receivers. Any change in the termination voltage affects the termination circuitry and affects comparisons performed by the sampling circuitry. Received signals are reconstructed at the receivers using the received signals, the signal termination circuitry and the signal sampling circuitry.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Balwinder Singh, Milam Paraschou, Chad S. Gallun, Jeffrey Cooper, Dean E. Gonzales, Alushulla Jack Ambundo, Thomas H. Likens, III, Gerald R. Talbot
  • Patent number: 10581587
    Abstract: Systems, apparatuses, and methods for implementing a deskewing method for a physical layer interface on a multi-chip module are disclosed. A circuit connected to a plurality of communication lanes trains each lane to synchronize a local clock of the lane with a corresponding global clock at a beginning of a timing window. Next, the circuit symbol rotates each lane by a single step responsive to determining that all of the plurality of lanes have an incorrect symbol alignment. Responsive to determining that some but not all of the plurality of lanes have a correct symbol alignment, the circuit symbol rotates lanes which have an incorrect symbol alignment by a single step. When the end of the timing window has been reached, the circuit symbol rotates lanes which have a correct symbol alignment and adjusts a phase of a corresponding global clock to compensate for missed symbol rotations.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 3, 2020
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Varun Gupta, Milam Paraschou, Gerald R. Talbot, Gurunath Dollin, Damon Tohidi, Eric Ian Carpenter, Chad S. Gallun, Jeffrey Cooper, Hanwoo Cho, Thomas H. Likens, III, Scott F. Dow, Michael J. Tresidder
  • Publication number: 20200036563
    Abstract: A passive continuous time linear equalizer (CTLE) includes an alternating current (AC) coupling capacitor coupled in series between an input node and an output node of the passive equalizer. An electrostatic discharge protection device is coupled in parallel to the input node. An inductor is coupled in parallel to a node between the input node and the output node. Further, the passive CTLE includes a variable resistor coupled in series between the inductor and a ground. Increased impedance of the inductor at higher frequencies portions of the input signal operate to boost a gain of the equalizer at the higher frequencies without active power by over-terminating the input signal.
    Type: Application
    Filed: December 10, 2018
    Publication date: January 30, 2020
    Inventors: Gerald R. TALBOT, Dean GONZALES
  • Publication number: 20190181087
    Abstract: An integrated circuit assembly includes an integrated circuit package substrate and a conductive land pad disposed on a surface of the integrated circuit package substrate. The conductive land pad comprises a conductor portion, an isolated conductor portion, and an isolation portion disposed between the conductor portion and the isolated conductor portion. The isolated conductor portion may surround a first side of the conductor portion and a second side of the conductor portion. The isolated conductor portion may surround a portion of a perimeter of the conductor portion. The isolation portion may include a gap between the conductor portion and the isolated conductor portion. The gap may have a width smaller than a radius of an interconnect structure of a receiving structure.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 13, 2019
    Inventors: Sanjay Dandia, Gerald R. Talbot, Mahesh S. Hardikar
  • Patent number: 10122392
    Abstract: Systems, apparatuses, and methods for implementing a negative resistance circuit for bandwidth extension are disclosed. Within a feedback path of a differential signal path, capacitors are placed on the inputs and outputs of a fully differential amplifier connecting to the differential signal path. In one embodiment, a circuit includes a fully differential amplifier and four capacitors. A first capacitor is coupled between a first signal path and a non-inverting input terminal of the amplifier and a second capacitor is coupled between the first signal path and a non-inverting output terminal of the amplifier. A third capacitor is coupled between a second signal path and an inverting input terminal of the amplifier and a fourth capacitor is coupled between the second signal path and an inverting output terminal of the amplifier. The first and second signal paths carry a differential signal.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 6, 2018
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Milam Paraschou, Gerald R. Talbot, Dean E. Gonzales
  • Patent number: 10103837
    Abstract: Systems, apparatuses, and methods for implementing asynchronous feedback training sequences are described. A transmitter transmits a training sequence indication to a receiver via a communication channel including a plurality of data lines. The training sequence indication includes a bit sequence to indicate the beginning of a training sequence. The indication includes a transition from a zero to a one at the midpoint of a supercycle of ‘N’ clock cycles in length, followed by a predetermined number of ones. The training sequence indication is then followed by a test pattern. The beginning of the test pattern occurs at the end of a supercycle. The receiver determines if there are any errors in the received test pattern, and then sends feedback to the transmitter that indicates whether any errors were detected. Responsive to receiving the feedback, the transmitter alters delay settings for one or more of the data lines.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: October 16, 2018
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Stanley Ames Lackey, Jr., Damon Tohidi, Gerald R. Talbot, Edoardo Prete
  • Publication number: 20180130780
    Abstract: An interposer includes transmission lines formed of multiple metal layers disposed in a stack orthogonal to a plane formed by a primary surface of a substrate upon which the interposer is mounted. The use of multiple metal layers to form the transmission lines results in each transmission line having a height, or thickness, that is at least equal to the width of the transmission line. By using multiple metal layers, a transmission line can be formed having a height or thickness that is more than twice or more than three times the width of the transmission line.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 10, 2018
    Inventors: DEAN GONZALES, MARK EDWARD FRANKOVICH, JULIUS E. DIN, GERALD R. TALBOT, JOSEPH R. SIEGEL, YAN ZHANG
  • Publication number: 20180054223
    Abstract: Systems, apparatuses, and methods for implementing a negative resistance circuit for bandwidth extension are disclosed. Within a feedback path of a differential signal path, capacitors are placed on the inputs and outputs of a fully differential amplifier connecting to the differential signal path. In one embodiment, a circuit includes a fully differential amplifier and four capacitors. A first capacitor is coupled between a first signal path and a non-inverting input terminal of the amplifier and a second capacitor is coupled between the first signal path and a non-inverting output terminal of the amplifier. A third capacitor is coupled between a second signal path and an inverting input terminal of the amplifier and a fourth capacitor is coupled between the second signal path and an inverting output terminal of the amplifier. The first and second signal paths carry a differential signal.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: Milam Paraschou, Gerald R. Talbot, Dean E. Gonzales
  • Publication number: 20170373944
    Abstract: Systems, apparatuses, and methods for utilizing training sequences on a replica lane are described. A transmitter is coupled to a receiver via a communication channel with a plurality of lanes. One of the lanes is a replica lane used for tracking the drift in the optimal sampling point due to temperature variations, power supply variations, or other factors. While data is sent on the data lanes, test patterns are sent on the replica lane to determine if the optimal sampling point for the replica lane has drifted since a previous test. If the optimal sampling point has drifted for the replica lane, adjustments are made to the sampling point of the replica lane and to the sampling points of the data lanes.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 28, 2017
    Inventors: Stanley Ames Lackey, JR., Damon Tohidi, Gerald R. Talbot, Edoardo Prete
  • Publication number: 20170373788
    Abstract: Systems, apparatuses, and methods for implementing asynchronous feedback training sequences are described. A transmitter transmits a training sequence indication to a receiver via a communication channel including a plurality of data lines. The training sequence indication includes a bit sequence to indicate the beginning of a training sequence. The indication includes a transition from a zero to a one at the midpoint of a supercycle of ‘N’ clock cycles in length, followed by a predetermined number of ones. The training sequence indication is then followed by a test pattern. The beginning of the test pattern occurs at the end of a supercycle. The receiver determines if there are any errors in the received test pattern, and then sends feedback to the transmitter that indicates whether any errors were detected. Responsive to receiving the feedback, the transmitter alters delay settings for one or more of the data lines.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 28, 2017
    Inventors: Stanley Ames Lackey, JR., Damon Tohidi, Gerald R. Talbot, Edoardo Prete
  • Patent number: 9374080
    Abstract: A method and apparatus is provided for outputting a reset signal during power-up until two conditions are satisfied. In one embodiment, the method and apparatus includes a voltage detector that provides a first output (“VO1”) when an output voltage of a regulator (“VREG”) exceeds a threshold voltage, thereby satisfying a first condition, a comparator receiving a first input voltage and a second input voltage, the comparator providing a second output (“VO2”) when the first input voltage exceeds the second input voltage, thereby satisfying a second condition, and a release circuit that outputs the reset signal unless the voltage detector provides VO1 while the comparator provides VO2.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: June 21, 2016
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Brian W. Amick, Gerald R. Talbot, Warren Anderson
  • Patent number: 9213355
    Abstract: In a system comprising a first device and a second device coupled via an interconnect, a method includes setting a rate of insertion of clock mismatch compensation symbols for a transmit port of the first device to one of a plurality of rates of insertion responsive to the second device having capability to compensate for a clock frequency mismatch. A device includes an interconnect interface comprising a transmit port and a receive port, and a configuration structure. The configuration structure comprises a capability field to store a value indicating whether the device has a capability to compensate for a clock frequency mismatch, and an enable field. The device further includes a packet control module to configure a rate of insertion of clock mismatch compensation symbols by the transmit port into a data stream responsive to a value stored at the enable field.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: December 15, 2015
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Gordon F. Caruk, Gerald R. Talbot
  • Publication number: 20150130519
    Abstract: A method and apparatus is provided for outputting a reset signal during power-up until two conditions are satisfied. In one embodiment, the method and apparatus includes a voltage detector that provides a first output (“VO1”) when an output voltage of a regulator (“VREG”) exceeds a threshold voltage, thereby satisfying a first condition, a comparator receiving a first input voltage and a second input voltage, the comparator providing a second output (“VO2”) when the first input voltage exceeds the second input voltage, thereby satisfying a second condition, and a release circuit that outputs the reset signal unless the voltage detector provides VO1 while the comparator provides VO2.
    Type: Application
    Filed: October 20, 2014
    Publication date: May 14, 2015
    Inventors: Brian W. Amick, Gerald R. Talbot, Warren Anderson
  • Patent number: 8760946
    Abstract: Various method and apparatus embodiments for training a delay for enabling a data strobe signal in a memory subsystem are disclosed. In one embodiment, a system includes a memory controller configured to receive a data strobe signal. The memory controller includes a training circuit. The training circuit includes a first storage circuit coupled to receive the data strobe signal on a data input and an enable signal on a clock input, and a training unit configured to, based on an output signal received from the first flip-flop, adjust a phase of the enable signal until an assertion of the enable signal coincides with a preamble indication in the data strobe signal.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 24, 2014
    Assignee: Advanced Micro Devices
    Inventors: Glenn A Dearth, Warren R Anderson, Anwar P Kashem, Richard W Reeves, Edoardo Prete, Gerald R Talbot
  • Publication number: 20140129867
    Abstract: In a system comprising a first device and a second device coupled via an interconnect, a method includes setting a rate of insertion of clock mismatch compensation symbols for a transmit port of the first device to one of a plurality of rates of insertion responsive to the second device having capability to compensate for a clock frequency mismatch. A device includes an interconnect interface comprising a transmit port and a receive port, and a configuration structure. The configuration structure comprises a capability field to store a value indicating whether the device has a capability to compensate for a clock frequency mismatch, and an enable field. The device further includes a packet control module to configure a rate of insertion of clock mismatch compensation symbols by the transmit port into a data stream responsive to a value stored at the enable field.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 8, 2014
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Gordon F. Caruk, Gerald R. Talbot