Patents by Inventor Ghavam G. Shahidi

Ghavam G. Shahidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200233644
    Abstract: A true random number generator includes a latch circuit, a noise circuit coupled to the latch circuit and an equalization circuit coupled to the inputs of the latch circuit, the equalization circuit being configured to maintain the latch circuit in a balanced state and to allow the latch circuit to resolve from a metastable state based on a timing control. A method of generating a random number output includes maintaining a latch circuit in a balanced state by turning on an equalization circuit coupled to the inputs of the latch circuit, coupling at least one noise source to the latch circuit, allowing the latch circuit to resolve from a metastable state by turning off the equalization circuit and repeatedly turning the equalization circuit on and off based on a timing control.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Inventors: Chitra K. Subramanian, Ghavam G. Shahidi
  • Patent number: 10720670
    Abstract: A solid state electrochemical battery and a method of creation thereof are provided. There is a first conductive electrode on top of a substrate. There is a first polar conductor layer on top of the conductive electrode layer. A first solid electrolyte layer is on top of the first polar conductor layer. There is a second polar conductor layer on top of the first solid electrolyte layer and a second conductive electrode layer on top of the second polar conductor layer. A third polar conductor layer is on top of the second conductive electrode layer and a second solid electrolyte layer is on top of the third polar conductor layer. There is a fourth polar conductor layer on top of the second solid electrolyte layer and a third conductive electrode layer on top of the fourth polar conductor layer.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Frank Robert Libsch, Ghavam G. Shahidi, Ko-Tao Lee, Stephen M. Rossnagel
  • Publication number: 20200220736
    Abstract: Devices, computer-implemented methods, and systems that can facilitate radio frequency identification components are provided. According to an embodiment, a device can comprise a memory that can be coupled to an integrated circuit device that can have a processor and an accelerator component that can execute a cryptographic module. The device can further comprise a radio frequency identification device that can be coupled to the integrated circuit device that can communicate with a radio frequency identification reader device based on the cryptographic module.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Chitra Subramanian, Seiji Munetoh, Frank Robert Libsch, Daniel Joseph Friedman, Ghavam G. Shahidi, Arun Paidimarri
  • Patent number: 10707367
    Abstract: A photovoltaic device and method include a substrate coupled to an emitter side structure on a first side of the substrate and a back side structure on a side opposite the first side of the substrate. The emitter side structure or the back side structure include layers alternating between wide band gap layers and narrow band gap layers to provide a multilayer contact with an effectively increased band offset with the substrate and/or an effectively higher doping level over a single material contact. An emitter contact is coupled to the emitter side structure on a light collecting end portion of the device. A back contact is coupled to the back side structure opposite the light collecting end portion.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: July 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoar-Tabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10692716
    Abstract: Embodiments of the invention are directed to a method of forming a semiconductor device. A non-limiting example of the method includes forming a semiconductor layer within or on a portion of a substrate, wherein the semiconductor layer includes a first type of semiconductor material. A gate stack is formed over a first exposed surface of the semiconductor layer. A first hydrogenated and doped semiconductor layer is formed over a second exposed surface of the semiconductor layer. A second hydrogenated and doped semiconductor layer is formed over a third exposed surface of the semiconductor layer, wherein a lateral dimension of the first hydrogenated and doped semiconductor layer terminates at a first sidewall of the gate stack, and wherein a lateral dimension of the second hydrogenated and doped semiconductor layer terminates at a second sidewall of the gate stack.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20200191746
    Abstract: A semiconductor structure capable of real-time spatial sensing of nanoparticles within a nanofluid is provided. The structure includes an array of gate structures. An interlevel dielectric material surrounds the array of gate structures. A vertical inlet channel is located within a portion of the interlevel dielectric material and on one side of the array of gate structures. A vertical outlet channel is located within another portion of the interlevel dielectric material and on another side of the array of gate structures. A horizontal channel that functions as a back gate is in fluid communication with the vertical inlet and outlet channels, and is located beneath the array of gate structures. A back gate dielectric material portion lines exposed surfaces within the vertical inlet channel, the vertical outlet channel and the horizontal channel.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 18, 2020
    Inventors: Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10679853
    Abstract: A hard mask and a method of creating thereof are provided. A first layer is deposited that is configured to provide at least one of a chemical and a mechanical adhesion to a layer immediately below it. A second layer is deposited having an etch selectivity that is faster than the first layer. A third layer is deposited having an etch selectivity that is slower than the first and second layers. The third layer has a composite strength that is higher than the first and second layers. A photoresist layer is deposited on top of the third layer and chemically removed above an inner opening. The third layer and part of the second layer are anisotropically etched through the inner opening. The second layer and the first layer are isotropically etched to create overhang regions of the third layer.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Frank Robert Libsch, Ghavam G. Shahidi, Ko-Tao Lee, Stephen M. Rossnagel
  • Patent number: 10679847
    Abstract: Embodiments of the invention are directed to a method of forming a semiconductor device. A non-limiting example of the method includes forming a semiconductor layer within or on a portion of a substrate, wherein the semiconductor layer includes a first type of semiconductor material. A gate stack is formed over a first exposed surface of the semiconductor layer. A first hydrogenated and doped semiconductor layer is formed over a second exposed surface of the semiconductor layer. A second hydrogenated and doped semiconductor layer is formed over a third exposed surface of the semiconductor layer, wherein a lateral dimension of the first hydrogenated and doped semiconductor layer terminates at a first sidewall of the gate stack, and wherein a lateral dimension of the second hydrogenated and doped semiconductor layer terminates at a second sidewall of the gate stack.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 10672929
    Abstract: A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Bahman Hekmatshoar-Tabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20200152622
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Patent number: 10651252
    Abstract: A method of forming an active matrix pixel that includes forming a driver device including contact regions deposited using a low temperature deposition process on a first portion of an insulating substrate. An electrode of an organic light emitting diode is formed on a second portion of the insulating substrate. The electrode is in electrical communication to receive an output from the driver device. At least one passivation layer is formed over the driver device. A switching device comprising at least one amorphous semiconductor layer is formed on the at least one passivation layer over the driver device.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 12, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20200144439
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials. A zinc oxide interface layer is present between the LED and the photovoltaic device. The zinc oxide layers or can also form a LED.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10644184
    Abstract: A method of forming a photovoltaic device that includes ion implanting a first conductivity type dopant into first regions of a semiconductor layer of an SOI substrate, wherein the first regions are separated by a first pitch; and ion implanting a second conductivity type dopant into second regions of the semiconductor layer of the SOI substrate. The second regions are separated by a second pitch. Each second conductivity type implanted region of the second regions is in direct contact with first conductivity type implanted region of the first regions to provide a plurality of p-n junctions, and adjacent p-n junctions are separated by an intrinsic portion of the semiconductor layer to provide P-I-N cells that are horizontally oriented.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 5, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10615290
    Abstract: A junction field-effect transistor (JFET) with a gate region that includes two separate sub-regions having material of different conductivity types and/or a Schottky junction that substantially suppresses gate current when the gate junction is forward-biased, as well as complementary circuits that incorporate such JFET devices.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 10608111
    Abstract: A method for manufacturing a semiconductor device includes forming a semiconductor layer on an insulating layer, epitaxially growing a first layer on the semiconductor layer, wherein the first layer has a first doping concentration, epitaxially growing a second layer on the semiconductor layer, wherein the second layer has a second doping concentration higher than the first doping concentration, forming a gate dielectric over an active region of the semiconductor layer, forming a gate electrode on the gate dielectric, and forming a plurality of source/drain contacts to the second layer, wherein the first and second layers comprise crystalline hydrogenated silicon (c-Si:H).
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi, Marinus P. J. Hopstaken
  • Patent number: 10605768
    Abstract: A semiconductor structure capable of real-time spatial sensing of nanoparticles within a nanofluid is provided. The structure includes an array of gate structures. An interlevel dielectric material surrounds the array of gate structures. A vertical inlet channel is located within a portion of the interlevel dielectric material and on one side of the array of gate structures. A vertical outlet channel is located within another portion of the interlevel dielectric material and on another side of the array of gate structures. A horizontal channel that functions as a back gate is in fluid communication with the vertical inlet and outlet channels, and is located beneath the array of gate structures. A back gate dielectric material portion lines exposed surfaces within the vertical inlet channel, the vertical outlet channel and the horizontal channel.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20200098937
    Abstract: A photovoltaic device that includes a p-n junction of first type III-V semiconductor material layers, and a window layer of a second type III-V semiconductor material on the light receiving end of the p-n junction, wherein the second type III-V semiconductor material has a greater band gap than the first type III-V semiconductor material, and the window layer of the photovoltaic device has a cross-sectional area of microscale.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Talia S. Gershon, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10593744
    Abstract: An apparatus includes transistor and a set of one or more serially-connected diodes coupled to the transistor. The transistor includes a gate, and first and second terminals. A first diode in the set of serially-connected diodes has a first terminal connected to the second terminal of the transistor. At least one of the diodes includes a first layer including silicon having a first type of carrier as its majority carrier, a first terminal, and a second terminal. The first terminal includes a second layer formed on the first layer, a third layer comprising amorphous hydrogenated silicon having a second type of carrier as its majority carrier formed on the second layer, and a conductive layer formed on the third layer. The second terminal includes a fourth layer comprising crystalline hydrogenated silicon of the first carrier type formed on the first layer, and a conductive layer formed on the fourth layer.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 10593663
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Patent number: 10587224
    Abstract: Low-power multi-stage amplifiers are provided for capacitive reading of low-amplitude and low-frequency signals. An exemplary multi-stage amplifier comprises a plurality of amplification stages, wherein each of the amplification stages comprises an amplifying transistor and an active load, wherein substantially all of the amplification stages have one or more of an increasing DC bias level and a decreasing DC bias level relative to a prior stage, and wherein an output of a given one of the amplification stages is directly applied as an input to a subsequent one of the amplification stages.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi