Patents by Inventor Gil-heyun Choi

Gil-heyun Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130313722
    Abstract: A semiconductor device includes an insulating layer on a surface of a substrate, a through-via structure vertically passing through the substrate and the insulating layer and being exposed on the insulating layer, and a via pad on a surface of the exposed through-via structure. The via pad includes a via pad body, and a via pad inlay below the via pad body and protruding into the insulating layer and surrounding the through-via structure. The via pad body and the via pad inlay include a via pad barrier layer directly on the insulating layer and a via pad metal layer on the via pad barrier layer.
    Type: Application
    Filed: February 8, 2013
    Publication date: November 28, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Son-Kwan Hwang, Byung-Lyul Park, Hyun-Soo Chung, Jin-Ho Chun, Gil-Heyun Choi
  • Patent number: 8592310
    Abstract: In methods of manufacturing a semiconductor device, a substrate having a first surface and a second surface opposite to the first surface is prepared. A sacrificial layer pattern is formed in a region of the substrate that a through electrode will be formed. The sacrificial layer pattern extends from the first surface of the substrate in a thickness direction of the substrate. An upper wiring layer is formed on the first surface of the substrate. The upper wiring layer includes a wiring on the sacrificial layer pattern. The second surface of the substrate is partially removed to expose the sacrificial layer pattern. The sacrificial layer pattern is removed from the second surface of the substrate to form an opening that exposes the wiring. A through electrode is formed in the opening to be electrically connected to the wiring.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Lyul Park, Gil-Heyun Choi, Suk-Chul Bang, Kwang-Jin Moon, Dong-Chan Lim, Deok-Young Jung
  • Patent number: 8592979
    Abstract: A conductive pattern structure includes a first insulating interlayer on a substrate, metal wiring on the first insulating interlayer, a second insulating interlayer on the metal wiring, and first and second metal contacts extending through the second insulating interlayer. The first metal contacts contact the metal wiring in a cell region and the second metal contact contacts the metal wiring in a peripheral region. A third insulating interlayer is disposed on the second insulating interlayer. Conductive segments extend through the third insulating interlayer in the cell region and contact the first metal contacts. Another conductive segment extends through the third insulating interlayer in the peripheral region and contacts the second metal contact. The structure facilitates the forming of uniformly thick wiring in the cell region using an electroplating process.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hei-Seung Kim, Gil-Heyun Choi, Ji-Soon Park, Jong-Myeong Lee
  • Patent number: 8581334
    Abstract: A via structure may include a first conductive pattern, a buffer pattern, and a second conductive pattern. The first conductive pattern may be on an inner wall of a first substrate and the inner wall may define a via hole passing at least partially through the first substrate. The buffer pattern may be on the first conductive pattern and the buffer pattern may partially fill the via hole. The second conductive pattern may be on a top surface of the buffer pattern in the via hole.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: November 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chan Lim, Gil-Heyun Choi, Byung-Lyul Park, Sang-Hoon Ahn, Jong-Myeong Lee
  • Patent number: 8569862
    Abstract: A fuse base insulating region, for example, an insulating interlayer or a compensation region disposed in an insulating interlayer, is formed on a substrate. An etch stop layer is formed on the fuse base insulating region and forming an insulating interlayer having a lower dielectric constant than the first fuse base insulating region on the etch stop layer. A trench extending through the insulating interlayer and the etch stop layer and at least partially into the fuse base insulating region is formed. A fuse is formed in the trench. The fuse base insulating region may have a greater mechanical strength and/or density than the second insulating interlayer.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 29, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Ahn, Gil-Heyun Choi, Jong-Myeong Lee, Sang-Don Nam, Kyu-Hee Han
  • Publication number: 20130264720
    Abstract: A semiconductor chip including through silicon vias (TSVs), wherein the TSVs may be prevented from bending and the method of fabricating the semiconductor chip may be simplified, and a method of fabricating the semiconductor chip. The semiconductor chip includes a silicon substrate having a first surface and a second surface; a plurality of TSVs which penetrate the silicon substrate and protrude above the second surface of the silicon substrate; a polymer pattern layer which is formed on the second surface of the silicon substrate, surrounds side surfaces of the protruding portion of each of the TSVs, and comprises a flat first portion and a second portion protruding above the first portion; and a plated pad which is formed on the polymer pattern layer and covers a portion of each of the TSVs exposed from the polymer pattern layer.
    Type: Application
    Filed: January 4, 2013
    Publication date: October 10, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jin-ho Chun, Byung-lyul Park, Hyun-soo Chung, Gil-heyun Choi, Son-kwan Hwang
  • Patent number: 8546256
    Abstract: The methods include forming a semiconductor substrate pattern by etching a semiconductor substrate. The semiconductor pattern has a first via hole that exposes side walls of the semiconductor substrate pattern, and the side walls of the semiconductor substrate pattern exposed by the first via hole have an impurity layer pattern. The methods further include treating upper surfaces of the semiconductor substrate pattern, the treated upper surfaces of the semiconductor substrate pattern being hydrophobic; removing the impurity layer pattern from the side walls of the semiconductor substrate pattern exposed by the first via hole; forming a first insulating layer pattern on the side walls of the semiconductor substrate pattern exposed by the first via hole; and filling a first conductive layer pattern into the first via hole and over the first insulating layer pattern.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-young Jung, Gil-heyun Choi, Suk-chul Bang, Byung-lyul Park, Kwang-jin Moon, Dong-chan Lim
  • Patent number: 8547747
    Abstract: A non-volatile memory device is provided, including a substrate formed of a single crystalline semiconductor, pillar-shaped semiconductor patterns extending perpendicular to the substrate, a plurality of gate electrodes and a plurality of interlayer dielectric layers alternately stacked perpendicular to the substrate, and a charge spread blocking layer formed between the plurality of gate electrodes and the plurality of interlayer dielectric layers.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-Kyoung Kim, Gil-Heyun Choi, Jong-Myeong Lee, In-Sun Park, Ji-Soon Park
  • Patent number: 8546162
    Abstract: A method for forming a light guide layer with improved transmission reliability in a semiconductor substrate, the method including forming a trench in the semiconductor substrate, forming a cladding layer and a preliminary light guide layer in the trench such that only one of opposite side end portions of the preliminary light guide layer is in contact with an inner sidewall of the trench, and performing a thermal treatment on the substrate to change the preliminary light guide layer into the light guide layer.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Lok Bae, Byung-Lyul Park, Pil-Kyu Kang, Gil-Heyun Choi, Kwang-Jin Moon
  • Patent number: 8530329
    Abstract: A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Soon Choi, Jun-Won Lee, Gil-Heyun Choi, Eun-Kee Hong, Hong-Gun Kim, Ha-Young Yi
  • Patent number: 8524615
    Abstract: Example embodiments relate to a method of forming a hardened porous dielectric layer. The method may include forming a dielectric layer containing porogens on a substrate, transforming the dielectric layer into a porous dielectric layer using a first UV curing process to remove the porogens from the dielectric layer, and transforming the porous dielectric layer into a crosslinked porous dielectric layer using a second UV curing process to generate crosslinks in the porous dielectric layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Ahn, Byung-Hee Kim, Sang-Don Nam, Kyu-Hee Han, Gil-heyun Choi, Jang-Hee Lee, Jong-Min Baek, Kyoung-Hee Kim
  • Publication number: 20130200525
    Abstract: A semiconductor device including a lower layer, an insulating layer on a first side of the lower layer, an interconnection structure in the insulating layer, a via structure in the lower layer. The via structure protrudes into the insulating layer and the interconnection structure.
    Type: Application
    Filed: December 18, 2012
    Publication date: August 8, 2013
    Inventors: Ho-Jin LEE, Pil-Kyu KANG, Kyu-Ha LEE, Byung-Lyul PARK, Hyun-Soo CHUNG, Gil-Heyun CHOI
  • Patent number: 8501606
    Abstract: A semiconductor memory wiring method includes: receiving a substrate having a cell array region and a peripheral circuit region; depositing a first insulating layer on the substrate; forming a first contact plug in the cell array region, the first contact plug having a first conductive material extending through the first insulating layer; forming a first elongated conductive line at substantially the same time as forming the first contact plug, the first elongated conductive line having the first conductive material directly covering and integrated with the first contact plug; forming a second contact plug in the peripheral circuit region at substantially the same time as forming the first contact plug, the second contact plug having the first conductive material extending through the first insulating layer; and forming a second elongated conductive line at substantially the same time as forming the second contact plug, the second elongated conductive line having the first conductive material directly coveri
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Ok Lee, Dae-Yong Kim, Gil-Heyun Choi, Byung-Hee Kim
  • Patent number: 8497207
    Abstract: A semiconductor device in which an increase of contact resistance Rc between a metal contact and a plug due to misalignment between the metal contact and the plug can be reduced and the difficulty of a Cu filling process during the process of forming the plug may be reduced. The semiconductor device includes a substrate including an active area and a device isolation layer; a metal contact that is formed on the substrate and is electrically connected to the active area; a landing pad formed on the metal contact by electroless plating; and a plug that is formed on the landing pad and is electrically connected to the metal contact via the landing pad.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-ho Yun, Gil-heyun Choi, Jong-myeong Lee
  • Patent number: 8497157
    Abstract: In a method of manufacturing a semiconductor device, a front end of line (FEOL) process may be performed on a semiconductor substrate to form a semiconductor structure. A back end of line (BEOL) process may be performed on the semiconductor substrate to form a wiring structure electrically connected to the semiconductor structure, thereby formed a semiconductor chip. A hole may be formed through a part of the semiconductor chip. A preliminary plug may have a dimple in the hole. The preliminary plug may be expanded into the dimple by a thermal treatment process to form a plug. Thus, the plug may not have a protrusion protruding from the upper surface of the semiconductor chip, so that the plug may be formed by the single CMP process.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Jin Moon, Byung-Lyul Park, Do-Sun Lee, Gil-Heyun Choi, Suk-Chul Bang, Dong-Chan Lim, Deok-Young Jung
  • Publication number: 20130187287
    Abstract: A semiconductor device includes a circuit pattern over a first surface of a substrate, an insulating interlayer covering the circuit pattern, a TSV structure filling a via hole through the insulating interlayer and the substrate, an insulation layer structure on an inner wall of the via hole and on a top surface of the insulating interlayer, a buffer layer on the TSV structure and the insulation layer structure, a conductive structure through the insulation layer structure and a portion of the insulating interlayer to be electrically connected to the circuit pattern, a contact pad onto a bottom of the TSV structure, and a protective layer structure on a second surface the substrate to surround the contact pad.
    Type: Application
    Filed: September 26, 2012
    Publication date: July 25, 2013
    Inventors: Byung-lyul Park, Gil-Heyun Choi, Suk-Chul Bang, Kwang-Jin Moon, Dong-Chan Lim, Deok-Young Jung
  • Patent number: 8492223
    Abstract: A method of manufacturing a flash memory device includes: forming a dielectric layer on an active region of a substrate having an isolation region and the active region; forming a floating gate on the dielectric layer; forming an isolation layer in the isolation region; forming a nitride layer including a first nitride layer portion formed on an exposed surface of the floating gate and a second nitride layer portion formed on an exposed surface of the isolation layer; selectively removing nitrogen atoms from the second nitride layer portion of the nitride layer; forming an inter-gate dielectric layer on both the first nitride layer portion and the isolation layer; and forming a control gate on the inter-gate dielectric layer.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-wan Choi, Wan-sik Hwang, Gil-heyun Choi, Eunkee Hong, Ju-seon Goo, Bo-young Lee
  • Patent number: 8486783
    Abstract: A method of manufacturing a semiconductor device includes: forming a trench for forming buried type wires by etching a substrate; forming first and second oxidation layers on a bottom of the trench and a wall of the trench, respectively; removing a part of the first oxidation layer and the entire second oxidation layer; and forming the buried type wires on the wall of the trench by performing a silicide process on the wall of the trench from which the second oxidation layer is removed. As a result, the buried type wires are insulated from each other.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-hee Sohn, Byung-hee Kim, Dae-yong Kim, Min-sang Song, Gil-heyun Choi, Kwang-jin Moon, Hyun-su Kim, Jang-hee Lee, Eun-ji Jung, Eun-ok Lee
  • Patent number: 8476763
    Abstract: Methods of forming conductive pattern structures form an insulating interlayer on a substrate that is partially etched to form a first trench extending to both end portions of a cell block. The insulating interlayer is also partially etched to form a second trench adjacent to the first trench, and a third trench extending to the both end portions of the cell block. The second trench has a disconnected shape at a middle portion of the cell block. A seed copper layer is formed on the insulating interlayer. Inner portions of the first, second and third trenches are electroplated with a copper layer. The copper layer is polished to expose the insulating interlayer to form first and second conductive patterns in the first and second trenches, respectively, and a first dummy conductive pattern in the third trench. Related conductive pattern structures are also described.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hei-Seung Kim, In-Sun Park, Gil-Heyun Choi, Ji-Soon Park, Jong-Myeong Lee, Jong-Won Hong
  • Patent number: 8466556
    Abstract: In a method of forming a wiring structure for a semiconductor device, an insulation layer is formed on a semiconductor substrate on which a plurality of conductive structures is positioned. An upper surface of the insulation layer is planarized and spaces between the conductive structures are filled with the insulation layer. The insulation layer is partially removed from the substrate to form at least one opening through which the substrate is partially exposed. A residual metal layer is formed on a bottom and a lower portion of the sidewall of the at least one opening and a metal nitride layer is formed on the residual metal layer and an upper sidewall of the opening with a metal material. Accordingly, an upper portion of the barrier layer can be prevented from being removed in a planarization process for forming the metal plug.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 18, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Park, Gil-Heyun Choi, Sang-Woo Lee, Ho-Ki Lee