Patents by Inventor Gordon F. Stuntz

Gordon F. Stuntz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9663728
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 30, 2017
    Assignee: EXXONMOBILE RESEARCH AND ENGINEERING COMPANY
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
  • Publication number: 20150045600
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
  • Publication number: 20110152062
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material, The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: William A. Wachter, Brenda A. Raich, Theodore E. Datz, David O. Marler, Nicholas Rollman, Jeffrey T. Elks, Gordon F. Stuntz
  • Publication number: 20110119990
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHY
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
  • Publication number: 20110119992
    Abstract: The present invention relates to novel interstitial metal hydrides and catalyst containing interstitial metal hydrides that are resistant to oxidation and resultant loss of catalytic activity. The processes of the present invention include use of these improved, oxidation resistant interstitial metal hydride compositions for improved overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Gordon F. Stuntz, Jonathan M. McConnachie, Heather A. Elsen, Patricia A. Bielenberg
  • Patent number: 7867937
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Patent number: 7799210
    Abstract: A three-step process of removing sulfur from naphtha feeds. The steps include a first hydrotreating step, a mercaptan removal agent and an adsorbent containing a reactive metal on an inorganic support. Step one removes at least 95 wt. % of the sulfur compounds while preserving at least 50 wt. % of the olefins. Treatment with the mercaptan removal agent lowers the sulfur content to 30 wppm total sulfur and final naphtha product contains leas than 10 wppm total sulfur.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jeffrey M. Dysard, Gordon F. Stuntz, Thomas R. Halbert, Andrzej Malek
  • Patent number: 7435335
    Abstract: A process for hydroprocessing a distillate stream to produce a stream exceptionally low in sulfur, with total aromatics and polynuclear aromatics being moderately reduced. A distillate stream is hydrodesulfurized in a first hydrodesulfurization stage. The product stream thereof is passed to a first separation stage wherein a vapor phase product stream and a liquid product stream are produced. The liquid phase product stream is passed to a second hydrodesulfurization stage and the product stream thereof is passed to a second separation stage wherein a vapor phase product stream and a liquid product stream low in sulfur are produced. At least a portion of the vapor product stream from said second separation stage can be cascaded to the first hydrodesulfurization stage.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: October 14, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward S. Ellis, William E. Lewis, Larry L. Iaccino, Michele S. Touvelle, Gordon F. Stuntz
  • Publication number: 20080146435
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3g to 300g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 19, 2008
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Patent number: 6893475
    Abstract: A distillate fuel composition boiling in the range of about 190° C. to 400° C. with a T10 point greater than 205° C., and having a sulfur level of less than about 100 wppm, a total aromatics content of about 15 to 35 wt. %, a polynuclear aromatics content of less than about 3 wt. %, wherein the ratio of total aromatics to polynuclear aromatics is greater than about 11.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: May 17, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward S. Ellis, Lynne Gillespie, Michele S. Touvelle, William E. Lewis, Gordon F. Stuntz, Lisa I. Yeh
  • Patent number: 6843905
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: January 18, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Patent number: 6837989
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 4, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6824673
    Abstract: A process for producing distillate boiling range streams that are low in both sulfur and aromatics. A distillate feedstock is treated in a first hydrodesulfurization stage in the presence of a hydrogen-containing treat gas and a hydrodesulfurization catalyst, thereby resulting in partial desufurization of the stream. The partially desulfurized distillate stream is then treated in a second hydrodesulfurization stage, also in the presence of a hydrogen-containing treat gas and a hydrodesulfurization catalyst. The hydrogen-containing treat gas is cascaded from the next downstream reaction stage, which is an aromatics hydrogenation stage.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: November 30, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward S. Ellis, Henry Jung, William E. Lewis, Larry L. Iaccino, Michele S. Touvelle, Gordon F. Stuntz
  • Publication number: 20040222130
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: June 10, 2004
    Publication date: November 11, 2004
    Inventors: Gordon F. Stuntz, Robert C.W. Welch, Thomas R. Halbert
  • Patent number: 6811682
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6803494
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. The catalyst may be pre-coked with a carbonaceous feed. Alternatively, the carbonaceous feed used to coke the catalyst may be co-fed with the naphtha feed.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: October 12, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry, Shun C. Fung
  • Patent number: 6755974
    Abstract: The invention relates to a method for treating naphtha, such as catalytically cracked naphtha, in order to remove acidic impurities, such as mercaptans. In particular, the invention relates to a method for mercaptans having a molecular weight of about C4 (C4H10S=90 g/mole) and higher, such as recombinant mercaptans.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: June 29, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mark A. Greaney, Binh N. Le, Daniel P. Leta, John N. Begasse, Charles T. Huang, Verlin Keith Turner, Gordon F. Stuntz
  • Publication number: 20030188994
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: January 15, 2003
    Publication date: October 9, 2003
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Patent number: 6610197
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 26, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Publication number: 20030150775
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: August 14, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein