Patents by Inventor Gordon F. Stuntz

Gordon F. Stuntz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030132137
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: July 17, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6579444
    Abstract: A process for removing sulfur compounds from hydrocarbon feedstreams, particularly those boiling in the naphtha range, by contacting the feedstream with an adsorbent comprised of cobalt and one or more Group VI metals selected from molybdenum and tungsten on a refractory support. This invention also relates to a process wherein a naphtha feedstream is first subjected to selective hydrodesulfurization to remove sulfur but not appreciably saturate olefins. A product stream is produced containing mercaptans that are removed by use of the cobalt-containing adsorbents of the present invention.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: June 17, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, David N. Zinkie, Myles W. Baker, Bal K. Kaul, Gordon F. Stuntz, Joseph T. O'Bara
  • Patent number: 6569315
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefinic naphthas. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking in an out-board FCC reactor it in order to form a naphthenic blend-stock.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 27, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter
  • Publication number: 20030094414
    Abstract: The invention relates to a method for treating naphtha, such as catalytically cracked naphtha, in order to remove acidic impurities, such as mercaptans. In particular, the invention relates to a method for mercaptans having a molecular weight of about C4 (C4H10S=90 g/mole) and higher, such as recombinant mercaptans.
    Type: Application
    Filed: June 4, 2002
    Publication date: May 22, 2003
    Inventors: Mark A. Greaney, Binh N. Le, Daniel P. Leta, John N. Begasse, Charles T. Huang, Verlin Keith Turner, Gordon F. Stuntz
  • Patent number: 6489530
    Abstract: A process for producing polymers from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha feedstream is contacted in the reaction zone with a catalyst under catalytic conversion concditions. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone. A stream rich in C4 and/or C5 olefins is recycled to the stripping zone.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: December 3, 2002
    Assignee: Exxon Mobile Chemical Patents Inc.
    Inventor: Gordon F. Stuntz
  • Publication number: 20020157990
    Abstract: A process for removing sulfur compounds from hydrocarbon feedstreams, particularly those boiling in the naphtha range, by contacting the feedstream with an adsorbent comprised of cobalt and one or more Group VI metals selected from molybdenum and tungsten on a refractory support. This invention also relates to a process wherein a naphtha feedstream is first subjected to selective hydrodesulfurization to remove sulfur but not appreciably saturate olefins. A product stream is produced containing mercaptans that are removed by use of the cobalt-containing adsorbents of the present invention.
    Type: Application
    Filed: December 17, 2001
    Publication date: October 31, 2002
    Inventors: Joseph L. Feimer, David N. Zinkie, Myles W. Baker, Bal K. Kaul, Gordon F. Stuntz, Joseph T. O'Bara
  • Publication number: 20020084211
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: October 12, 2001
    Publication date: July 4, 2002
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Patent number: 6409911
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single-phase synthesis solution.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: June 25, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6388152
    Abstract: A process for producing polymers from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is introduced into a process unit comprised of a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500° to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 14, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, Tan-Jen Chen
  • Publication number: 20020016251
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Application
    Filed: August 2, 2001
    Publication date: February 7, 2002
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6339181
    Abstract: This invention relates to a process to produce propylene from a hydrocarbon feed stream, preferably a naphtha feed stream, comprising C5 and C6 components wherein a light portion having a boiling point range of 120° C. or less is introduced into a reactor separately from the other components of the feed stream.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Tan-Jen Chen, Philip A. Ruziska, Gordon F. Stuntz, Paul K. Ladwig
  • Patent number: 6339180
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, B. Erik Henry
  • Publication number: 20010054571
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefinic naphthas. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking in an out-board FCC reactor it in order to form a naphthenic blend-stock.
    Type: Application
    Filed: March 16, 2001
    Publication date: December 27, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter
  • Publication number: 20010042702
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20010042701
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6315890
    Abstract: The invention is related to a two step process wherein the first step comprises cracking an olefinic naphtha resulting in a cracked product having a diminished total concentration of olefinic species. The second step comprises hydroprocessing at least a portion of the cracked product, especially a naphtha fraction, to provide a hydroprocessed cracked product having a reduced concentration of contaminant species but without a substantial octane reduction.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, Gordon F. Stuntz, Garland B. Brignac, Thomas R. Halbert
  • Patent number: 6313366
    Abstract: A process for producing propylene from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. A separate stream containing aromatics may be co-fed with the naphtha stream.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: November 6, 2001
    Assignee: ExxonMobile Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry, Shun C. Fung, Tan-Jen Chen, Jay F. Carpency, Ronald G. Searle
  • Patent number: 6306790
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica: alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 23, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6300537
    Abstract: Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Karl G. Strohmaier, David E. W. Vaughan, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6288298
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 11, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis