Patents by Inventor Gordon S. Kino

Gordon S. Kino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110088470
    Abstract: A method utilizes an optical resonator that includes a reflective element and a spatial mode filter positioned relative to the reflective element such that light emitted from the spatial mode filter is reflected by the reflective element. The optical resonator has an optical resonance with a resonance lineshape that is asymmetric as a function of wavelength.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J.F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 7911620
    Abstract: An optical sensor includes an optical coupler. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the optical coupler. Light signals counterpropagate through the photonic bandgap fiber and return to the optical coupler. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 22, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Hyang Kyun Kim, Vinayak Dangui, Gordon S. Kino
  • Patent number: 7911619
    Abstract: A fiber-optic sensor includes an optical fiber coil and a laser source optically coupled to the coil. Light from the source is transmitted to the coil as a first signal propagating along the coil in a first direction and a second signal propagating along the coil in a second direction opposite to the first direction. The optical paths of the first signal and the second signal are substantially reciprocal with one another and the first signal and the second signal are combined together after propagating through the coil to generate a third signal. The laser source is frequency-modulated or can have a coherence length longer than a length of the coil.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 22, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stéphane Blin, Michel J. F. Digonnet, Gordon S. Kino, Seth Lloyd
  • Publication number: 20110041616
    Abstract: An acoustic sensor includes at least one structure including at least one photonic crystal slab and an optical fiber optically coupled to the at least one photonic crystal slab, and having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Application
    Filed: September 1, 2010
    Publication date: February 24, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 7881565
    Abstract: An optical resonator includes a reflective element and an optical fiber. The optical fiber is positioned relative to the reflective element such that light emitted from the optical fiber is reflected by the reflective element. The optical resonator has an optical resonance with a resonance lineshape that is asymmetric as a function of wavelength.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: February 1, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 7853107
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: December 14, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20100309474
    Abstract: A gyroscope and a method of detecting rotation are provided. The gyroscope includes a structure configured to be driven to move about a drive axis. The structure is further configured to move about a sense axis in response to a Coriolis force generated by rotation of the structure about a rotational axis while moving about the drive axis. The gyroscope further includes an optical sensor system configured to optically measure movement of the structure about the sense axis. In certain embodiments, the gyroscope is a microelectromechanical system (MEMS) gyroscope.
    Type: Application
    Filed: April 29, 2010
    Publication date: December 9, 2010
    Inventors: Onur Kilic, Michel J.F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 7809219
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: October 5, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20100220387
    Abstract: A doped superfluorescent fiber source (SFS) has an enhanced mean wavelength stability. A method stabilizes the mean wavelength of a SFS. The method includes pumping the SFS with pump light from a pump source having a wavelength dependent on the temperature of the pump source and dependent on the power of the pump light. The length of the fiber is selected to compromise between reduction of the dependence of the mean wavelength on the pump light power and reduction of the contribution of the forward amplified spantaneous emission light produced by the fiber to the output light.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 2, 2010
    Inventors: Hee Gap Park, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 7764718
    Abstract: A doped superfluorescent fiber source (SFS) has an enhanced mean wavelength stability. A method stabilizes the mean wavelength of a SFS. The method includes providing an SFS including a doped fiber. The method further includes pumping the SFS with pump light from a pump source having a wavelength dependent on the temperature of the pump source and dependent on the power of the pump light. The method further includes optimizing the length of the fiber to reduce the influence of the pump light wavelength on the stability of the mean wavelength.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 27, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hee Gap Park, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 7746480
    Abstract: An apparatus characterizes at least one fiber Bragg grating. The apparatus includes a laser pulse source, an optical spectrum analyzer, and multiple optical paths. A first optical path includes a pulse stretcher and an attenuator. A second optical path optically coupled to the first optical path includes a mirror. A third optical path optically coupled to the first optical path includes a first fiber Bragg grating. A fourth optical path is optically coupled to the second optical path, the third optical path, and the optical spectrum analyzer. A fifth optical path optically coupled to the laser pulse source and the optical spectrum analyzer includes a delay line.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: June 29, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20100092125
    Abstract: An optical structure on an optical fiber and a method of fabrication is provided. The optical structure includes an end of an optical fiber and a layer formed on the end of the optical fiber. The layer comprises one or more first portions having a first optical pathlength in a direction perpendicular to the layer and one or more second portions having a second optical pathlength in the direction perpendicular to the layer, the second optical pathlength different from the first optical pathlength.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J.F. Digonnet, Gordon S. Kino, Olav Solgaard, Shrestha Basu Mallick, Onur Can Akkaya
  • Publication number: 20100067827
    Abstract: A method utilizes an optical image processing system. The method includes providing a measured magnitude of the Fourier transform of a complex transmission function of an object or optical image. The method further includes providing an estimated phase term of the Fourier transform of the complex transmission function. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex transmission function. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated complex transmission function by applying at least one constraint to the inverse Fourier transform.
    Type: Application
    Filed: November 20, 2009
    Publication date: March 18, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino
  • Publication number: 20100039649
    Abstract: An optical sensor includes an optical coupler. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the optical coupler. Light signals counterpropagate through the photonic bandgap fiber and return to the optical coupler. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
    Type: Application
    Filed: October 7, 2009
    Publication date: February 18, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J.F. Digonnet, Hyang Kyun Kim, Vinayak Dangui, Gordon S. Kino
  • Patent number: 7643952
    Abstract: A method processes an optical image. The method includes providing a measured magnitude of the Fourier transform of a two-dimensional complex transmission function. The method further includes providing an estimated phase term of the Fourier transform of the two-dimensional complex transmission function. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the two-dimensional complex transmission function. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated two-dimensional complex transmission function by applying at least one constraint to the inverse Fourier transform.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: January 5, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 7630589
    Abstract: An acoustic sensor and a method of fabricating an acoustic sensor are provided. The acoustic sensor includes at least one photonic crystal structure and an optical fiber having an end optically coupled to the at least one photonic crystal structure. The acoustic sensor further includes a structural portion mechanically coupled to the at least one photonic crystal structure and to the optical fiber. The at least one photonic crystal structure, the optical fiber, and the structural portion substantially bound a region having a volume such that a frequency response of the acoustic sensor is generally flat in a range of acoustic frequencies.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: December 8, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard, Shrestha Basu Mallick, Onur Can Akkaya
  • Patent number: 7619743
    Abstract: An optical sensor includes a directional coupler comprising at least a first port, a second port, and a third port. The first port is in optical communication with the second port and with the third port such that a first optical signal received by the first port is split into a second optical signal that propagates to the second port and a third optical signal that propagates to the third port. The optical sensor further includes a photonic bandgap fiber having a hollow core and an inner cladding generally surrounding the core. The photonic bandgap fiber is in optical communication with the second port and with the third port. The second optical signal and the third optical signal counterpropagate through the photonic bandgap fiber and return to the third port and the second port, respectively. The photonic bandgap fiber has a phase thermal constant S less than 8 parts-per-million per degree Celsius.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: November 17, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Hyang Kyun Kim, Vinayak Dangui, Gordon S. Kino
  • Publication number: 20090263090
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Application
    Filed: May 4, 2009
    Publication date: October 22, 2009
    Inventors: Vinayak Dangui, Michel J.F. Digonnet, Gordon S. Kino
  • Publication number: 20090208163
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 20, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J.F. Digonnet, Gordon S. Kino
  • Publication number: 20090207401
    Abstract: An apparatus characterizes at least one fiber Bragg grating. The apparatus includes a laser pulse source, an optical spectrum analyzer, and multiple optical paths. A first optical path includes a pulse stretcher and an attenuator. A second optical path optically coupled to the first optical path includes a mirror. A third optical path optically coupled to the first optical path includes a first fiber Bragg grating. A fourth optical path is optically coupled to the second optical path, the third optical path, and the optical spectrum analyzer. A fifth optical path optically coupled to the laser pulse source and the optical spectrum analyzer includes a delay line.
    Type: Application
    Filed: December 23, 2008
    Publication date: August 20, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino