Patents by Inventor Gregory M. Gutt

Gregory M. Gutt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9009796
    Abstract: In one embodiment, a method to authenticate a claimant comprises receiving, from the claimant, at least one of a set of beam data from a spot beam transmission, comparing the claimed at least one set of beam data to a known valid data set, and authenticating the claimant when a difference between at least one set of beam data and the known valid data set is less than a threshold.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 14, 2015
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, David A. Whelan, Arun Ayyagari
  • Patent number: 8989652
    Abstract: A system, method, and apparatus for advanced timing and time transfer for satellite constellations using crosslink ranging and an accurate time source are disclosed herein. In particular, the present disclosure relates generally to systems for providing improved positioning, navigation, and/or timing information for oscillator calibration and more specifically, to use at least one satellite with accessibility to an accurate time source to calibrate the local oscillator on a crosslink paired satellite. In at least, one embodiment, time synchronization on a subset of satellites with crosslinking capabilities is used to distribute time through a network of crosslinked satellites.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: March 24, 2015
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Gregory M. Gutt, Peter M. Fyfe
  • Patent number: 8977843
    Abstract: A system and method for verifying and/or geolocating network nodes in attenuated environments for cyber and network security applications are disclosed. The system involves an origination network node, a destination network node, and at least one router network node. The origination network node is configured for transmitting a data packet to the destination network node through at least one router network node. The data packet contains a security signature portion, a routing data portion, and a payload data portion. The security signature portion comprises a listing of at least one network node that the data packet travelled through from the origination network node to the destination network node. In addition, the security signature portion comprises geolocation information, identifier information, and timing information for at least one network node in the listing.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 10, 2015
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, David G. Lawrence
  • Patent number: 8949941
    Abstract: A system, method, and apparatus for the authentication of the physical location of a target node are disclosed herein. In one or more embodiments, the authentication of the target node's physical location is achieved by using ping ranging measurements obtained from the amount of time that elapses during ping messages being sent between the target node and at least one trusted node with a known physical location. The physical location of the trusted node(s) is obtained by using satellite geolocation techniques. The accuracy of the ranging measurements may be improved upon by using pre-coordination and/or priority determination of the ping messages being sent between the target node and the trusted node(s). In at least one embodiment, the ping messages are sent by dedicated ping response hardware that is associated with the target node and/or the trusted node(s). In some embodiments, the ping messages include a pseudo random code bit sequence.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael Lee O'Connor, Rachel Rane' Schmalzried
  • Patent number: 8910246
    Abstract: A system, method, and apparatus for contextual-based virtual data boundaries are disclosed herein. In particular, the present disclosure relates to improvements in access control that work to restrict the accessibility of data based on assigning contextual data thresholds that create a virtual boundary. Specifically, the disclosed method involves assigning at least one threshold to at least one contextual criterion. The method further involves determining whether contextual information from the claimant meets at least one threshold to at least one contextual criterion. Also, the method involves authenticating the claimant, if the contextual information from the claimant meets at least one of the thresholds to at least one contextual criterion. Further, the method involves allowing the claimant access to the data, if the claimant is authenticated.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 9, 2014
    Assignee: The Boeing Company
    Inventors: David A. Whelan, Gregory M. Gutt, David G. Lawrence, Michael L. O'Connor, Arun Ayyagari, Rachel Raneā€² Schmalzried
  • Publication number: 20140351576
    Abstract: A system and methods for location authentication are presented. An estimated server signal is estimated based on a generated known code signal, and a client received satellite signal is received from a client device. The client received satellite signal is compared to the estimated server signal to provide a comparison result.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Per K. Enge, David Lawrence, Michael L. O'Connor, Michael L. Eglington, Gregory M. Gutt, David A. Whelan
  • Publication number: 20140321511
    Abstract: A system and methods for location-based authentication using medium earth orbit (MEO) and low earth orbit (LEO) satellites are presented. Location of a client device is authenticated based on at least one client received MEO satellite signal received from at least one MEO satellite at the client device and at least one client received LEO satellite signal received from at least one LEO satellite at the client device.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Per K. Enge, David A. Whelan, Gregory M. Gutt, David Lawrence
  • Patent number: 8849565
    Abstract: A method and system for navigating are disclosed. The method and system comprise detecting neutrinos emitted by a source, measuring the angle of arrival of the neutrinos, and tagging the neutrino measurements utilizing an accurate clock. The method and system further include processing the tagged neutrino measurements through a computational model of a neutrino generator, and combining the processed measurements with navigational aids to provide location information. A system and method in accordance with at least one embodiment measure the angle of arrival of neutrinos generated by the sun, and use this measurement to derive navigational information. The measurement of the angle of arrival of the neutrinos is obtainable deep underground or underwater.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 30, 2014
    Assignee: The Boeing Company
    Inventor: Gregory M. Gutt
  • Patent number: 8843313
    Abstract: A method, system, and apparatus are disclosed for multipath isolation through the combined use of antenna diversity and frequency diversity. In particular, the present disclosure utilizes antenna diversity and frequency diversity to combat the deleterious effects of reflected signals on the positioning accuracy of satellite navigation systems. In at least one embodiment, the present disclosure uses two antennas and two frequencies for operation with a satellite navigation system. The present disclosure segregates the antennas and frequencies into two classes: references and monitors. The reference measurements are used for estimating the state of the vehicle, and the monitor measurements are used to detect faults that might degrade the reference estimation. Thus, the present disclosure enables an improvement in the positioning error experienced by roving users in downtown and indoor environments.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 23, 2014
    Assignee: The Boeing Company
    Inventors: Per K. Enge, Bart Ferrell, Gregory M. Gutt, James C. Lassa, Michael A. Rizzo, David A. Whelan
  • Patent number: 8837728
    Abstract: A system and methods for location authentication are presented. An estimated server signal is estimated based on a generated known code signal, and a client received satellite signal is received from a client device. The client received satellite signal is compared to the estimated server signal to provide a comparison result.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 16, 2014
    Assignee: The Boeing Company
    Inventors: Per K. Enge, David Lawrence, Michael L. O'Connor, Michael L. Eglington, Gregory M. Gutt, David A. Whelan
  • Patent number: 8811614
    Abstract: A system and methods for location-based authentication using medium earth orbit (MEO) and low earth orbit (LEO) satellites are presented. Location of a client device is authenticated based on at least one client received MEO satellite signal received from at least one MEO satellite at the client device and at least one client received LEO satellite signal received from at least one LEO satellite at the client device.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 19, 2014
    Assignee: The Boeing Company
    Inventors: Per K. Enge, David A. Whelan, Gregory M. Gutt, David Lawrence
  • Patent number: 8769267
    Abstract: A system and method for verifying and/or geolocating network nodes in a network in attenuated environments for cyber and network security applications are disclosed. The system involves an origination network node, a destination network node, and at least one router network node. The origination network node is configured for transmitting a data packet downstream to the destination network node through at least one router network node. The data packet contains a header portion and a payload data portion. At least one of the network nodes is an enabled network node. The enabled network node(s) is configured to verify any of the network nodes that are located upstream from the enabled network node(s) by analyzing the header portion and/or the payload data portion of the data packet.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: July 1, 2014
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, Michael L. O'Connor, David G. Lawrence
  • Publication number: 20140159953
    Abstract: A system and methods for reducing navigation satellite receiver power usage are presented. A wireless signal is received at a portable electronic device in a signal environment. At signal characteristic of the wireless signal at the portable electronic device is measured in the signal environment. An estimated signal strength of the wireless signal in the signal environment is estimated based on the signal characteristic. The estimated signal strength is compared to an expected signal strength of the wireless signal to calculate an estimated signal-strength-change relative to the expected signal strength. A GNSS signal is tracked at the portable electronic device, if the estimated signal-strength-change indicates an expected GNSS signal attenuation is lower than a signal attenuation threshold.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Inventors: David A. Whelan, Gregory M. Gutt, Michael L. O'Connor
  • Publication number: 20140104103
    Abstract: A system and methods for location authentication are presented. An estimated server signal is estimated based on a generated known code signal, and a client received satellite signal is received from a client device. The client received satellite signal is compared to the estimated server signal to provide a comparison result.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Inventors: Per K. Enge, David Lawrence, Michael L. O'Connor, Michael L. Eglington, Gregory M. Gutt, David A. Whelan
  • Publication number: 20140108800
    Abstract: A system and methods for time and/or location authentication are presented. A hash value is received from a client device and a hash value receiving time of the received hash value is stored. A data block is received after receiving the hash value is received, the received data block comprising alleged transmission signal data. A computed hash value of the received data block is computed, and an estimated transmission signal client receiving time by the client is calculated based on the alleged transmission signal data. A timely possession of the received data block by the client device is authenticated based on a comparison of the computed hash value to the received hash value and a comparison of the hash value receiving time to the estimated transmission signal client receiving time.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Inventors: David Lawrence, Michael L. O'Connor, Michael L. Eglington, Gregory M. Gutt
  • Publication number: 20140104102
    Abstract: A system and methods for location-based authentication using medium earth orbit (MEO) and low earth orbit (LEO) satellites are presented. Location of a client device is authenticated based on at least one client received MEO satellite signal received from at least one MEO satellite at the client device and at least one client received LEO satellite signal received from at least one LEO satellite at the client device.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Inventors: Per K. Enge, David A. Whelan, Gregory M. Gutt, David Lawrence
  • Publication number: 20130335268
    Abstract: A method, system, and apparatus are disclosed for multipath isolation through the combined use of antenna diversity and frequency diversity. In particular, the present disclosure utilizes antenna diversity and frequency diversity to combat the deleterious effects of reflected signals on the positioning accuracy of satellite navigation systems. In at least one embodiment, the present disclosure uses two antennas and two frequencies for operation with a satellite navigation system. The present disclosure segregates the antennas and frequencies into two classes: references and monitors. The reference measurements are used for estimating the state of the vehicle, and the monitor measurements are used to detect faults that might degrade the reference estimation. Thus, the present disclosure enables an improvement in the positioning error experienced by roving users in downtown and indoor environments.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Per K. Enge, Bart Ferrell, Gregory M. Gutt, James C. Lassa, Michael A. Rizzo, David A. Whelan
  • Publication number: 20130305044
    Abstract: A system and method for verifying and/or geolocating network nodes in a network in attenuated environments for cyber and network security applications are disclosed. The system involves an origination network node, a destination network node, and at least one router network node. The origination network node is configured for transmitting a data packet downstream to the destination network node through at least one router network node. The data packet contains a header portion and a payload data portion. At least one of the network nodes is an enabled network node. The enabled network node(s) is configured to verify any of the network nodes that are located upstream from the enabled network node(s) by analyzing the header portion and/or the payload data portion of the data packet.
    Type: Application
    Filed: August 15, 2012
    Publication date: November 14, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, Michael L. O'Connor, David G. Lawrence
  • Patent number: 8584205
    Abstract: A transmission-based authentication system and method to prevent an unauthorized claimant from tracking a signal are disclosed herein. In one or more embodiments, the method involves transmitting, from at least one transmission source, a plurality of authentication signals. The method further involves receiving, from at least one receiving source, a resultant signal that includes at least two of the authentication signals. Further, the method involves authenticating, with at least one authenticator device, at least one claimant by comparing properties of the resultant signal the claimant receives from the receiving source location(s) to expected properties of the resultant signal that the claimant should receive from the receiving source location(s). The properties that are compared are signal power, doppler shift, time of reception, and/or signal modulation. The transmission source(s) is employed in at least one satellite and/or at least one pseudo-satellite.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: November 12, 2013
    Assignee: The Boeing Company
    Inventors: David G. Lawrence, Gregory M. Gutt, David A. Whelan
  • Patent number: 8570216
    Abstract: System, methods, and devices for a self-sustaining differential corrections network that employs roving reference devices (RRDs) as reference stations for improving positioning, navigation, and timing (PN&T) solutions for other enabled local roving and/or stationary receiving devices (RDs) are disclosed herein. The disclosed differential correction system enhancement leverages RRDs enabled for a non-global positioning system (non-GPS), secondary PN&T signal to characterize local errors. These local errors are then used by local RDs in combination with a signal to calculate an improved PN&T estimate for the RDs.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: October 29, 2013
    Assignee: The Boeing Company
    Inventors: Gregory M. Gutt, Arun Ayyagari, David A. Whelan, Michael Lee O'Connor, David G. Lawrence