Patents by Inventor Gunter Weidmann

Gunter Weidmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980886
    Abstract: A process for preparing a glass container that includes: providing a glass tube with a first portion, a second portion, and a longitudinal axis (Ltube); holding the first portion in a first clamping chuck and the second portion in a second clamping chuck; rotating the glass tube around the longitudinal axis (Ltube); heating, via a heater, the glass tube above a glass transition temperature; separating the first and second portions from one another by pulling apart along the longitudinal axis (Ltube) while the heated glass tube is still rotating by moving the first and the second chucks away from each other; and moving the heater, while moving the first and second chucks away from each other, so that the heater follows a mass that remains at a circular end region of the first and/or second portion.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 14, 2024
    Assignees: SCHOTT PHARMA SCHWEIZ AG, SCHOTT PHARMA AG & CO. KGAA
    Inventors: Robert Frost, Doris Moseler, Günter Weidmann, Roman Huhn
  • Patent number: 11806716
    Abstract: A glass container is provided that includes a tube, a circular bottom, and a longitudinal axis. A curved glass heel extends from an outer end the bottom to the first end of the tube. The two-dimensional distance h(x,y) between a contact plane and the outer surface. The two-dimensional distance is measured in a direction parallel to the axis. The slope magnitude of the outer surface at the given position x,y is given by ?{square root over ((dh/dx)2+(dh/dy)2)}. The 75% quantile of values that have been determined for the term ?{square root over ((dh/dx)2+(dh/dy)2)}×d1/h(xy)delta for all given positions x,y within a circular area having a radius of 0.4×d2/2 and that correspond to the centre is less than 4100 ?m/mm. The adjacent positions x,y increase stepwise by 200 ?m, and h(x,y)delta=h(x,y)max?h(x,y)min, h(x,y)max is a maximum value for h(x,y) and h(x,y)min is a minimum value for h(x,y) being determined in that circular area.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 7, 2023
    Assignees: SCHOTT PHARMA AG & CO. KGAA, SCHOTT PHARMA SCHWEIZ AG
    Inventors: Robert Frost, Doris Moseler, Günter Weidmann, Roman Huhn, Jens Ulrich Thomas, Alexander Humbertjean, Frank-Thomas Lentes, Andreas Langsdorf
  • Publication number: 20230020260
    Abstract: A method and an apparatus for melting down glass are provided. The method includes using microwave radiation for at least part of the energy supply for melting for transforming a batch into a glass melt. The microwave radiation captures at least part of the transition between batch and primary melt. The method and apparatus include melting assembly with a melting tank which has walls within which both the batch for melting and the molten batch can be accommodated as a glass melt, where above the batch and above the glass melt there is at least one microwave-emitting source disposed.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 19, 2023
    Applicant: SCHOTT AG
    Inventors: Volker OHMSTEDE, Michael HAHN, Günter WEIDMANN, Hildegard RÖMER, Peter FRANKE, Frank-Thomas LENTES, Wolfgang SCHMIDBAUER, Rainer Erwin EICHHOLZ
  • Patent number: 11215812
    Abstract: An optical converter wheel, a method of producing, and a method of using are provided. The wheel includes an inorganic converter material that converts light of a first wavelength into light of a second wavelength and a converter substrate. The converter substrate has a coefficient of thermal expansion CTEKS of 4 to 18×10?6 1/K in a range from 20° C.-300° C. and a thermal conductivity of at least 50 W/mK at 20° C.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 4, 2022
    Assignee: SCHOTT AG
    Inventors: Volker Hagemann, Albrecht Seidl, Sylvia Biedenbender, Günter Weidmann
  • Publication number: 20210188687
    Abstract: A process for preparing a glass container that includes: providing a glass tube with a first portion, a second portion, and a longitudinal axis (Ltube); holding the first portion in a first clamping chuck and the second portion in a second clamping chuck; rotating the glass tube around the longitudinal axis (Ltube); heating, via a heater, the glass tube above a glass transition temperature; separating the first and second portions from one another by pulling apart along the longitudinal axis (Ltube) while the heated glass tube is still rotating by moving the first and the second chucks away from each other; and moving the heater, while moving the first and second chucks away from each other, so that the heater follows a mass that remains at a circular end region of the first and/or second portion.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Applicants: SCHOTT AG, SCHOTT Schweiz AG
    Inventors: Robert Frost, Doris Moseler, Günter Weidmann, Roman Huhn
  • Publication number: 20210187496
    Abstract: A glass container is provided that includes a tube, a circular bottom, and a longitudinal axis. A curved glass heel extends from an outer end the bottom to the first end of the tube. The two-dimensional distance h(x,y) between a contact plane and the outer surface. The two-dimensional distance is measured in a direction parallel to the axis. The slope magnitude of the outer surface at the given position x,y is given by ?{square root over ((dh/dx)2+(dh/dy)2)}. The 75% quantile of values that have been determined for the term ?{square root over ((dh/dx)2+(dh/dy)2)}×d1/h(xy)delta for all given positions x,y within a circular area having a radius of 0.4×d2/2 and that correspond to the centre is less than 4100 ?m/mm. The adjacent positions x,y increase stepwise by 200 ?m, and h(x,y)delta=h(x,y)max?h(x,y)min, h(x,y)max is a maximum value for h(x,y) and h(x,y)min is a minimum value for h(x,y) being determined in that circular area.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Applicants: SCHOTT AG, SCHOTT Schweiz AG
    Inventors: Robert Frost, Doris Moseler, Günter Weidmann, Roman Huhn, Jens Ulrich Thomas, Alexander Humbertjean, Frank-Thomas Lentes, Andreas Langsdorf
  • Publication number: 20210187497
    Abstract: A glass container is provided that includes a tube, a circular bottom, and a longitudinal axis. A curved glass heel extends from an outer end the bottom to the first end of the tube. The outer surface has a topography defined by a function ?(x) that is an azimuthal average of a distance between a contact plane and the outer surface at any given position located on a circle having the centre and the radius |x|. The values ? for ?(x) are determined for a plurality of circles the radius of which increases stepwise by 500 ?m starting with a circle around the centre having a radius of 500 ?m. The values ? are determined in a range from x=?0.4×d2/2 to x=+0.4×d2/2, d2 having a size such that at least 4 values ? are determined and can be fitted with a curvature function h ^ ? ( x ) = - c × x 2 1 + 1 - c 2 × x 2 + h 0 .
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Applicants: SCHOTT AG, SCHOTT Schweiz AG
    Inventors: Alexander Humbertjean, Tobias Wetzel, Robert Frost, Jens Ulrich Thomas, Frank-Thomas Lentes, Andreas Langsdorf, Doris Moseler, Günter Weidmann, Roman Huhn
  • Publication number: 20210003838
    Abstract: An optical converter wheel, a method of producing, and a method of using are provided. The wheel includes an inorganic converter material that converts light of a first wavelength into light of a second wavelength and a converter substrate. The converter substrate has a coefficient of thermal expansion CTEKS of 4 to 18×10?6 1/K in a range from 20° C.-300° C. and a thermal conductivity of at least 50 W/mK at 20° C.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 7, 2021
    Applicant: SCHOTT AG
    Inventors: Volker Hagemann, Albrecht Seidl, Sylvia Biedenbender, Günter Weidmann
  • Patent number: 10358371
    Abstract: An apparatus and a method for producing glass products from a glass melt, avoiding bubble formation, are disclosed, wherein the apparatus includes a crucible and an internally component for processing the glass melt, and wherein, for heating the glass melt, the apparatus comprises an AC generator which energizes the crucible or stirring crucible via electrical connection elements. The component or stirring system is connected via a current-limiting choke having a variable impedance with the power supply elements. The impedance of the current-limiting choke is adjusted so that a AC density existing in the glass melt lies between a lower limit value and an upper limit value. By means of a choke and by adjusting the impedance it can be achieved that the AC load of the system can be minimized and that simultaneously the water decomposition reaction at the precious metal surfaces can positively be influenced.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: July 23, 2019
    Assignee: SCHOTT AG
    Inventors: Klaus-Dieter Duch, Olaf Claussen, Thomas Pfeiffer, Günter Weidmann, Reinhard Wurm
  • Publication number: 20170305775
    Abstract: An apparatus and a method for producing glass products from a glass melt, avoiding bubble formation, are disclosed, wherein the apparatus includes a crucible and an internally component for processing the glass melt, and wherein, for heating the glass melt, the apparatus comprises an AC generator which energizes the crucible or stirring crucible via electrical connection elements. The component or stirring system is connected via a current-limiting choke having a variable impedance with the power supply elements. The impedance of the current-limiting choke is adjusted so that a AC density existing in the glass melt lies between a lower limit value and an upper limit value. By means of a choke and by adjusting the impedance it can be achieved that the AC load of the system can be minimized and that simultaneously the water decomposition reaction at the precious metal surfaces can positively be influenced.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Applicant: SCHOTT AG
    Inventors: Klaus-Dieter Duch, Olaf Claussen, Thomas Pfeiffer, Günter Weidmann, Reinhard Wurm
  • Patent number: 8869561
    Abstract: A device for the refining of a glass melt at high temperatures according to the skull pot principle is provided. The device includes a skull crucible having walls that are constructed from a plurality of pipes, a high-frequency coil for coupling electrical energy into the contents of the skull crucible, and an inlet and an outlet of the skull crucible being arranged in a melt surface region of the glass melt, wherein the inlet and the outlet are essentially arranged lying opposite one another.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 28, 2014
    Assignee: Schott AG
    Inventors: Erich Rodek, Wolfgang Schmid-Bauer, Hilgegard Römer, Günter Weidmann, Werner Kiefer
  • Publication number: 20100147031
    Abstract: A device for the refining of a glass melt at high temperatures according to the skull pot principle is provided. The device includes a skull crucible having walls that are constructed from a plurality of pipes, a high-frequency coil for coupling electrical energy into the contents of the skull crucible, and an inlet and an outlet of the skull crucible being arranged in a melt surface region of the glass melt, wherein the inlet and the outlet are essentially arranged lying opposite one another.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 17, 2010
    Inventors: Erich Rodek, Wolfgang Schmid-Bauer, Hilgegard Römer, Günter Weidmann, Werner Kiefer
  • Patent number: 7694533
    Abstract: A method for the refining of glass by means of high temperatures in a skull crucible is provided. The method includes introducing a glass melt in the skull crucible through an inlet disposed at an upper region of the skull crucible, heating the skull crucible by irradiation of high-frequency energy, and discharging the glass melt from the skull crucible through an outlet disposed at the upper region, the outlet being disposed at a place essentially lying opposite the inlet.
    Type: Grant
    Filed: July 14, 2001
    Date of Patent: April 13, 2010
    Assignee: Schott Glas
    Inventors: Erich Rodek, Wolfgang Schmid-Bauer, Hilgegard Römer, Günter Weidmann, Werner Kiefer
  • Patent number: 7530238
    Abstract: A heating apparatus for the conductive heating of melts, in particular for the rapid melting-down, refining and/or conditioning of melts, is provided. The heating apparatus includes at least one electrode, as well as a first cooling system with a cooling power, which can be set and/or controlled variably.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: May 12, 2009
    Assignee: Schott AG
    Inventors: Rainer Eichholz, Guido Raeke, Volker Ohmstede, Gunter Weidmann, Frank-Thomas Lentes, Thomas Stelle, Ernst-Walter Schaefer, Hildegard Roemer, Joerg Schollmayer, Holger Hunnius, Frank-Jurgen Druschke
  • Publication number: 20070266737
    Abstract: A device for the refining of a glass melt at high temperatures according to the skull pot principle is provided. The device includes a skull crucible having walls that are constructed from a plurality of pipes, a high-frequency coil for coupling electrical energy into the contents of the skull crucible, and an inlet and an outlet of the skull crucible being arranged in a melt surface region of the glass melt, wherein the inlet and the outlet are essentially arranged lying opposite one another.
    Type: Application
    Filed: August 2, 2007
    Publication date: November 22, 2007
    Inventors: Erich Rodek, Wolfgnag Bauer, Hilgegard Romer, Gunter Weidmann, Werner Kiefer
  • Publication number: 20060144089
    Abstract: A method and an apparatus for heating a melt in a melting vessel with cooled walls is provided. The melt is heated conductively by current flowing between at least two cooled electrodes, which each replace part of the wall of the melting vessel.
    Type: Application
    Filed: November 27, 2003
    Publication date: July 6, 2006
    Inventors: Rainer Eichholz, Guido Rake, Volker Ohmstede, Gunter Weidmann, Frank-Thomas Lentes, Thomas Stelle, Ernst-Walter Schafer, Hildegard Romer, Jorg Schollmayer, Holger Hunnius, Frank-Jurgen Druschke
  • Publication number: 20060137402
    Abstract: A heating apparatus for the conductive heating of melts, in particular for the rapid melting-down, refining and/or conditioning of melts, is provided. The heating apparatus includes at least one electrode, as well as a first cooling system with a cooling power, which can be set and/or controlled variably.
    Type: Application
    Filed: November 27, 2003
    Publication date: June 29, 2006
    Inventors: Rainer Eichholz, Guido Raeke, Volker Ohmstede, Gunter Weidmann, Frank-Thomas Lentes, Thomas Stelle, Ernst-Walter Schaefer, Hildegard Roemer, Joerg Schollmayer, Holger Hunnius, Frank-Juergen Druschke
  • Patent number: 6848275
    Abstract: This invention relates to a device for melting or refining glass or glass ceramics. According to the invention, such a device is provided with the following characteristics: a channel which is arranged in an essentially horizontal manner and which is provided with an inlet and an outlet for the glass melt; and an HF coil for coupling HF energy into the melt is allocated to the channel. The channel is made of a plurality of metal pipes in a similar way to a skull pot. Said pipes can be connected to a cooling medium.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: February 1, 2005
    Assignee: Schott Glas
    Inventors: Uwe Kolberg, Hildegard Römer, Frank-Thomas Lentes, Günter Weidmann
  • Publication number: 20040011080
    Abstract: The invention relates to a method and a device for refining a glass melt according to the skull pot principle. According to the invention, the inlet and outlet are located in the upper area of the crucible and lie diametrically opposite each other.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 22, 2004
    Inventors: Erich Rodek, Wolfgang Schmid Bauer, Hilgegard Romer, Gunter Weidmann, Werner Kiefer
  • Patent number: 5324361
    Abstract: To coat several cap-shaped substrates simultaneously in an economical way with the same and high quality, several coating chambers are connected into a cap coating station by a symmetrical gas line system with a common gas generator and by another gas line system with a common vacuum pump. The gas lines have a cross sectional area Q.sub.A (x) and a cross sectional form Q.sub.F (x) which as a function of the distance x from the gas generator or from the vacuum pump are substantially the same. In this way, the same flow conditions are assured in all coating chambers. The gas line systems can be formed by precision pipes or by a stack of solid plates, in which gas ducts are introduced by boring or milling. Several cap coating stations, which are connected by suitable symmetrical gas line systems with a common vacuum pump and a common gas generator, can be combined to form a unit.
    Type: Grant
    Filed: June 18, 1992
    Date of Patent: June 28, 1994
    Assignee: Schott Glaswerke
    Inventors: Heinz-Werner Etzkorn, Harald Krummel, Gunter Weidmann, Volker Paquet