Patents by Inventor Gurtej S. Sandhu

Gurtej S. Sandhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11600485
    Abstract: In an example, a method may include closing an opening in a structure with a sacrificial material at a first processing tool, moving the structure from the first processing tool to a second processing tool while the opening is closed, and removing the sacrificial material at the second processing tool. The structure may be used in semiconductor devices, such as memory devices.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew S. Thorum, Gurtej S. Sandhu
  • Patent number: 11560009
    Abstract: Methods for fabricating stamps and systems for patterning a substrate, and devices resulting from those methods are provided.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Gurtej S. Sandhu
  • Patent number: 11515198
    Abstract: Some embodiments include a semiconductor construction which has one or more openings extending into a substrate. The openings are at least partially filled with dielectric material comprising silicon, oxygen and carbon. The carbon is present to a concentration within a range of from about 3 atomic percent to about 20 atomic percent. Some embodiments include a method of providing dielectric fill across a semiconductor construction having an opening extending therein. The semiconductor construction has an upper surface proximate the opening. The method includes forming photopatternable dielectric material within the opening and across the upper surface, and exposing the photopatternable dielectric material to patterned actinic radiation.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Scott L. Light, John A. Smythe, Sony Varghese
  • Publication number: 20220344200
    Abstract: Methods of forming high aspect ratio openings. The method comprises removing a portion of a dielectric material at a temperature less than about 0° C. to form at least one opening in the dielectric material. The at least one opening comprises an aspect ratio of greater than about 30:1. A protective material is formed in the at least one opening and on sidewalls of the dielectric material at a temperature less than about 0° C. Methods of forming high aspect ratio features are also disclosed, as are semiconductor devices.
    Type: Application
    Filed: July 7, 2022
    Publication date: October 27, 2022
    Inventors: Ken Tokashiki, John A. Smythe, Gurtej S. Sandhu
  • Patent number: 11476251
    Abstract: Systems, methods and apparatus are provided for a three-node access device in vertical three dimensional (3D) memory. An example method includes a method for forming arrays of vertically stacked memory cells, having horizontally oriented access devices and vertically oriented access lines. The method includes depositing alternating layers of a dielectric material and a sacrificial material in repeating iterations to form a vertical stack. An etchant process is used to form a first vertical opening exposing vertical sidewalls in the vertical stack adjacent a first region. The first region is selectively etched to form a first horizontal opening removing the sacrificial material a first horizontal distance back from the first vertical opening.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, John A. Smythe, III, Si-Woo Lee, Gurtej S. Sandhu, Armin Saeedi Vahdat
  • Publication number: 20220318084
    Abstract: This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresistive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Wayne Kinney, Gurtej S. Sandhu
  • Publication number: 20220320179
    Abstract: A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventors: Witold Kula, Wayne I. Kinney, Gurtej S. Sandhu
  • Publication number: 20220262623
    Abstract: A method of forming a structure comprises forming a pattern of self-assembled nucleic acids over a material. The pattern of self-assembled nucleic acids is exposed to at least one repair enzyme to repair defects in the pattern. The repaired pattern of self-assembled nucleic acids is transferred to the material to form features therein. A method of decreasing defect density in self-assembled nucleic acids is also disclosed. Self-assembled nucleic acids exhibiting an initial defect density are formed over at least a portion of a material and the self-assembled nucleic acids are exposed to at least one repair enzyme to repair defects in the self-assembled nucleic acids. Additional methods are also disclosed.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 18, 2022
    Inventor: Gurtej S. Sandhu
  • Patent number: 11417565
    Abstract: Methods of forming high aspect ratio openings. The method comprises removing a portion of a dielectric material at a temperature less than about 0° C. to form at least one opening in the dielectric material. The at least one opening comprises an aspect ratio of greater than about 30:1. A protective material is formed in the at least one opening and on sidewalls of the dielectric material at a temperature less than about 0° C. Methods of forming high aspect ratio features are also disclosed, as are semiconductor devices.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Ken Tokashiki, John A. Smythe, Gurtej S. Sandhu
  • Patent number: 11417661
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: March 1, 2020
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 11411008
    Abstract: A method used in forming integrated circuitry comprises forming a plurality of conductive vias comprising conductive material. The conductive vias are spaced relative one another by intermediate material. A discontinuous material is formed atop the conductive material of the vias and atop the intermediate material that is between the vias. Metal material is formed atop, directly against, and between the discontinuous material and atop and directly against the conductive material of the vias. The metal material is of different composition from that of the discontinuous material and is above the intermediate material that is between the vias. The metal material with discontinuous material there-below is formed to comprise a conductive line that is atop the intermediate material that is between the vias and is directly against individual of the vias. Structures independent of method are disclosed.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, John A. Smythe
  • Publication number: 20220238340
    Abstract: A method of forming a structure comprises forming a pattern of elongate features extending vertically from a base structure. Conductive material is formed on the elongate features. After completing the forming of the pattern of elongate features, the elongate features, the conductive material, or both is (are) exposed to at least one surface treatment gas. The at least one surface treatment gas comprises at least one species formulated to diminish attractive or cohesive forces at a surface of the conductive material. Apparatus and additional methods are also described.
    Type: Application
    Filed: March 7, 2022
    Publication date: July 28, 2022
    Inventors: Gurtej S. Sandhu, Marko Milojevic, John A. Smythe, Timothy A. Quick, Sumeet C. Pandey
  • Patent number: 11393872
    Abstract: A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 19, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Witold Kula, Wayne I. Kinney, Gurtej S. Sandhu
  • Publication number: 20220223602
    Abstract: Systems, methods, and apparatuses are provided for epitaxial single crystalline silicon growth for a horizontal access device. One example method includes depositing layers of a first dielectric material, a semiconductor material, and a second dielectric material to form a vertical stack, forming first vertical openings to form elongated vertical, pillar columns with first vertical sidewalls in the vertical stack, and forming second vertical openings through the vertical stack to expose second vertical sidewalls. Further, the example method includes selectively removing first portions of the semiconductor material from the second vertical openings to form horizontal openings with a remaining second portion of the semiconductor material at a distal end of the horizontal openings from the second vertical openings, and epitaxially growing single crystalline silicon within the horizontal openings from the distal end of the horizontal openings toward the second vertical openings to fill the horizontal openings.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Inventors: Armin Saeedi Vahdat, Gurtej S. Sandhu, Scott E. Sills, Si-Woo Lee, John A. Smythe, III
  • Patent number: 11379286
    Abstract: This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresistive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 5, 2022
    Assignee: OVONYX MEMORY TECHNOLOGY, LLC
    Inventors: Wayne Kinney, Gurtej S. Sandhu
  • Publication number: 20220173123
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. A channel material extends vertically along the stack. The channel material includes a semiconductor composition and has first segments alternating with second segments. The first segments are adjacent the wordline levels and the second segments are adjacent the insulative levels. The first segments have a first dopant distribution and the second segments have a second dopant distribution which is different from the first dopant distribution. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Byeung Chul Kim, Richard J. Hill, Francois H. Fabreguette, Gurtej S. Sandhu
  • Publication number: 20220158086
    Abstract: A magnetic cell includes a magnetic region formed from a precursor magnetic material comprising a diffusive species and at least one other species. An amorphous region is proximate to the magnetic region and is formed from a precursor trap material comprising at least one attractor species having at least one trap site and a chemical affinity for the diffusive species. The diffusive species is transferred from the precursor magnetic material to the precursor trap material where it bonds to the at least one attractor species at the trap sites. The species of the enriched trap material may intermix such that the enriched trap material becomes or stays amorphous. The depleted magnetic material may then be crystallized through propagation from a neighboring crystalline material without interference from the amorphous, enriched trap material. This enables high tunnel magnetoresistance and high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Inventors: Gurtej S. Sandhu, Sumeet C. Pandey
  • Patent number: 11335558
    Abstract: A method of forming a structure comprises forming a pattern of self-assembled nucleic acids over a material. The pattern of self-assembled nucleic acids is exposed to at least one repair enzyme to repair defects in the pattern. The repaired pattern of self-assembled nucleic acids is transferred to the material to form features therein. A method of decreasing defect density in self-assembled nucleic acids is also disclosed. Self-assembled nucleic acids exhibiting an initial defect density are formed over at least a portion of a material and the self-assembled nucleic acids are exposed to at least one repair enzyme to repair defects in the self-assembled nucleic acids. Additional methods are also disclosed.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: May 17, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 11329051
    Abstract: Systems, methods and apparatus are provided for a three-node access device in vertical three-dimensional (3D) memory. An example method includes a method for forming arrays of vertically stacked memory cells, having horizontally oriented access devices and vertically oriented access lines. The method includes depositing alternating layers of a dielectric material and a sacrificial material to form a vertical stack. Forming a plurality of first vertical openings to form elongated vertical, pillar columns with sidewalls in the vertical stack. Conformally depositing a gate dielectric in the plurality of first vertical openings. Forming a conductive material on the gate dielectric. Removing portions of the conductive material to form a plurality of separate, vertical access lines. Repairing a first side of the gate dielectric exposed where the conductive material was removed. Forming a second vertical opening to expose sidewalls adjacent a first region of the sacrificial material.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: May 10, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, Gurtej S. Sandhu, Armin Saeedi Vahdat, Si-Woo Lee, Scott E. Sills
  • Publication number: 20220102356
    Abstract: Systems, methods, and apparatuses are provided for epitaxial single crystalline silicon growth for a horizontal access device. One example method includes depositing layers of a first dielectric material, a semiconductor material, and a second dielectric material to form a vertical stack, forming first vertical openings to form elongated vertical, pillar columns with first vertical sidewalls in the vertical stack, and forming second vertical openings through the vertical stack to expose second vertical sidewalls. Further, the example method includes selectively removing first portions of the semiconductor material from the second vertical openings to form horizontal openings with a remaining second portion of the semiconductor material at a distal end of the horizontal openings from the second vertical openings, and epitaxially growing single crystalline silicon within the horizontal openings from the distal end of the horizontal openings toward the second vertical openings to fill the horizontal openings.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Inventors: Armin Saeedi Vahdat, Gurtej S. Sandhu, Scott E. Sills, Si-Woo Lee, John A. Smythe III