Patents by Inventor Han-Mei Choi

Han-Mei Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8426304
    Abstract: Methods of manufacturing a semiconductor device include forming a stopping layer pattern in a first region of a substrate. A first mold structure is formed in a second region of the substrate that is adjacent the first region. The first mold structure includes first sacrificial patterns and first interlayer patterns stacked alternately. A second mold structure is formed on the first mold structure and the stopping layer pattern. The second mold structure includes second sacrificial patterns and second interlayer patterns stacked alternately. The second mold structure partially covers the stopping layer pattern. A channel pattern is formed and passes through the first mold structure and the second mold structure.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chul Yoo, Chan-Jin Park, Ki-Hyun Hwang, Han-Mei Choi, Joon-Suk Lee
  • Patent number: 8410542
    Abstract: Nonvolatile memory devices include a tunnel insulating layer on a substrate and a charge storing layer on the tunnel insulating layer. A charge transfer blocking layer is provided on the charge storing layer. The charge transfer blocking layer is formed as a composite of multiple layers, which include a first oxide layer having a thickness of about 1 ? to about 10 ?. This first oxide layer is formed directly on the charge storing layer. The charge transfer blocking layer includes a first dielectric layer on the first oxide layer. The charge transfer blocking layer also includes a second oxide layer on the first dielectric layer and a second dielectric layer on the second oxide layer. The first and second dielectric layers have a higher dielectric constant relative to the first and second oxide layers, respectively. The memory cell includes an electrically conductive electrode on the charge transfer blocking layer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chul Yoo, Byong-Ju Kim, Han-Mei Choi, Ki-Hyun Hwang
  • Publication number: 20130005110
    Abstract: Provided is a method of manufacturing a semiconductor device having a capacitor. The method includes forming a composite layer, including sequentially stacking on a substrate alternating layers of first through nth sacrificial layers and first through nth supporting layers. A plurality of openings that penetrate the composite layer are formed. A lower electrode is formed in the plurality of openings. At least portions of the first through nth sacrificial layers are removed to define a support structure for the lower electrode extending between adjacent ones of the plurality of openings and the lower electrode formed therein, the support structure including the first through nth supporting layers and a gap region between adjacent ones of the first through nth supporting layers where the first through nth sacrificial layers have been removed. A dielectric layer is formed on the lower electrode and an upper electrode is formed on the dielectric layer.
    Type: Application
    Filed: May 23, 2012
    Publication date: January 3, 2013
    Inventors: Jun-Ho Yoon, Bong-Jin Kuh, Ki-Chul Kim, Gyung-Jin Min, Tae-Jin Park, Sang-Ryol Yang, Jung-Min Oh, Sang-Yoon Woo, Young-Sub Yoo, Ji-Eun Lee, Jong-Sung Lim, Yong-Moon Jang, Han-Mei Choi, Je-Woo Han
  • Publication number: 20120315752
    Abstract: A method of fabricating a nonvolatile memory device includes providing an intermediate structure in which a floating gate and an isolation film are disposed adjacent to each other on a semiconductor substrate and a gate insulating film is disposed on the floating gate and the isolation film, forming a conductive film on the gate insulating film, and annealing the conductive film so that part of the conductive film on an upper portion of the floating gate flows down onto a lower portion of the floating gate and an upper portion of the isolation film.
    Type: Application
    Filed: March 7, 2012
    Publication date: December 13, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung-Hong CHUNG, Young-Hee KIM, In-Sun YI, Han-Mei CHOI
  • Publication number: 20120276696
    Abstract: A vertical structure non-volatile memory device in which a gate dielectric layer is prevented from protruding toward a substrate; a resistance of a ground selection line (GSL) electrode is reduced so that the non-volatile memory device is highly integrated and has improved reliability, and a method of manufacturing the same are provided. The method includes: sequentially forming a polysilicon layer and an insulating layer on a silicon substrate; forming a gate dielectric layer and a channel layer through the polysilicon layer and the insulating layer, the gate dielectric layer and the channel layer extending in a direction perpendicular to the silicon substrate; forming an opening for exposing the silicon substrate, through the insulating layer and the polysilicon layer; removing the polysilicon layer exposed through the opening, by using a halogen-containing reaction gas at a predetermined temperature; and filling a metallic layer in the space formed by removing the polysilicon layer.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Inventors: Jun-Kyu Yang, Ki-Hyun Hwang, Phil-Ouk Nam, Jae-Young Ahn, Han-Mei Choi, Dong-Chul Yoo
  • Publication number: 20120276702
    Abstract: A method of manufacturing a semiconductor device includes forming a channel region, forming a buffer layer on the channel region, and heat-treating the channel region by using a gas containing halogen atoms.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Inventors: Jun-kyu YANG, Phil-ouk Nam, Ki-hyun Hwang, Jae-young Ahn, Han-mei Choi, Bi-o Kim
  • Patent number: 8294198
    Abstract: A semiconductor integrated circuit device is provided. The semiconductor integrated circuit device includes a plurality of isolation regions which are formed within a semiconductor substrate and define active regions. A tunnel layer and a trap seed layer are formed in each of the active regions and are sequentially stacked between the isolation regions. A trap layer is formed on the trap seed layer and protrudes further than a top surface of each of the isolation regions. A blocking layer is formed on the trap layer. A gate electrode is formed on the blocking layer.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chul Yoo, Eun-Ha Lee, Byong-Ju Kim, Hyung-Ik Lee, Sung Heo, Han-Mei Choi, Chan-Hee Park, Ki-Hyun Hwang
  • Publication number: 20120149185
    Abstract: Methods of manufacturing semiconductor devices include forming an integrated structure and a first stopping layer pattern in a first region. A first insulating interlayer and a second stopping layer are formed. A second preliminary insulating interlayer is formed by partially etching the second stopping layer and the first insulating interlayer in the first region. A first polishing is performed to remove a protruding portion. A second polishing is performed to expose the first and second stopping layer patterns.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 14, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyo-Jung Kim, Ki-Hyun Hwang, Kyung-Hyun Kim, Han-Mei Choi, Dong-Chul Yoo, Chan-Jin Park, Jong-Heun Lim, Myung-Jung Pyo, Byoung-Moon Yoon, Chang-Sup Mun
  • Publication number: 20120115309
    Abstract: Methods of manufacturing a semiconductor device include forming a stopping layer pattern in a first region of a substrate. A first mold structure is formed in a second region of the substrate that is adjacent the first region. The first mold structure includes first sacrificial patterns and first interlayer patterns stacked alternately. A second mold structure is formed on the first mold structure and the stopping layer pattern. The second mold structure includes second sacrificial patterns and second interlayer patterns stacked alternately. The second mold structure partially covers the stopping layer pattern. A channel pattern is formed and passes through the first mold structure and the second mold structure.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 10, 2012
    Inventors: Dong-Chul Yoo, Chan-Jin Park, Ki-Hyun Hwang, Han-Mei Choi, Joon-Suk Lee
  • Publication number: 20120098139
    Abstract: A vertical memory device includes a channel, a ground selection line (GSL), word lines, a string selection line (SSL), and a contact. The channel includes a vertical portion and a horizontal portion. The vertical portion extends in a first direction substantially perpendicular to a top surface of a substrate, and the horizontal portion is connected to the vertical portion and parallel to the top surface of the substrate. The GSL, the word lines and the SSL are formed on a sidewall of the vertical portion of the channel sequentially in the first direction, and are spaced apart from each other. The contact is on the substrate and electrically connected to the horizontal portion of the channel.
    Type: Application
    Filed: September 27, 2011
    Publication date: April 26, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soo-Doo Chae, Ki-Hyun Hwang, Han-Mei Choi, Dong-Chul Yoo
  • Publication number: 20120052673
    Abstract: A method for fabricating a nonvolatile memory device is disclosed. The method includes forming a first structure for a common source line on a semiconductor substrate, the first structure extending along a first direction, forming a mold structure by alternately stacking a plurality of sacrificial layers and a plurality of insulating layers on the semiconductor substrate, forming a plurality of openings in the mold structure exposing a portion of the first structure, and forming a first memory cell string at a first side of the first structure and a second memory cell string at a second, opposite side of the first structure. The plurality of openings include a first through-hole and a second through-hole, each through-hole passing through the plurality of sacrificial layers and plurality of insulating layers, and the first through-hole and the second through-hole overlap each other in the first direction.
    Type: Application
    Filed: August 5, 2011
    Publication date: March 1, 2012
    Inventors: Dong-Chul Yoo, Ki-Hyun Hwang, Han-Mei Choi, Jin-Gyun Kim
  • Publication number: 20120037977
    Abstract: An insulating pattern is disposed on a surface of a semiconductor substrate and includes a silicon oxynitride film. A conductive pattern is disposed on the insulating pattern. A data storage pattern and a vertical channel pattern are disposed within a channel hole formed to vertically penetrate the insulating pattern and the conductive pattern. The data storage pattern and the vertical channel pattern are conformally stacked along sidewalls of the insulating pattern and the conductive pattern. A concave portion is formed in the semiconductor substrate adjacent to the insulating pattern. The concave portion is recessed relative to a bottom surface of the insulating pattern.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Yul Lee, Han-Mei Choi, Dong-Chul Yoo, Young-Jong Je, Ki-Hyun Hwang
  • Patent number: 8114735
    Abstract: In a method of manufacturing a non-volatile memory device, a tunnel insulating layer may be formed on a channel region of a substrate. A charge trapping layer including silicon nitride may be formed on the tunnel insulating layer to trap electrons from the channel region. A heat treatment may be performed using a first gas including nitrogen and a second gas including oxygen to remove defect sites in the charge trapping layer and to densify the charge trapping layer. A blocking layer may be formed on the heat-treated charge trapping layer, and a conductive layer may then formed on the blocking layer. The blocking layer, the conductive layer, the heat-treated charge trapping layer and the tunnel insulating layer may be patterned to form a gate structure on the channel region. Accordingly, data retention performance and/or reliability of a non-volatile memory device including the gate structure may be improved.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 14, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Suk Kim, Si-Young Choi, Ki-Hyun Hwang, Han-Mei Choi, Seung-Hwan Lee, Seung-Jae Baik, Sun-Jung Kim, Kwang-Min Park, In-Sun Yi
  • Publication number: 20110300686
    Abstract: Methods of forming non-volatile memory devices include forming a semiconductor layer having a first impurity region of first conductivity type extending adjacent a first side thereof and a second impurity region of second conductivity type extending adjacent a second side thereof, on a substrate. A first electrically conductive layer is also provided, which is electrically coupled to the first impurity region. The semiconductor layer is converted into a plurality of semiconductor diodes having respective first terminals electrically coupled to the first electrically conductive layer. The first electrically conductive layer operates as a word line or bit line of the non-volatile memory device. The converting may include patterning the first impurity region into a plurality of cathodes or anodes of the plurality of semiconductor diodes (e.g., P-i-N diodes).
    Type: Application
    Filed: June 8, 2011
    Publication date: December 8, 2011
    Inventors: Soo-doo Chae, Ki-hyun Hwang, Han-mei Choi, Jun-kyu Yang, Byong-ju Kim
  • Publication number: 20110281379
    Abstract: Methods of forming conductive patterns include forming a conductive layer including a metal element on a substrate. The conductive layer is partially etched to generate a residue including an oxide of the metal element and to form a plurality of separately formed conductive layer patterns. A cleaning gas is inflowed onto the substrate including the conductive layer pattern. The metal compound is evaporated to remove the metal element contained in the residue and to form an insulating interface layer on the conductive layer pattern and a surface portion of the substrate through a reaction of a portion of the cleaning gas and oxygen. The residue may be removed from the conductive layer pattern to suppress generation of a leakage current.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 17, 2011
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Jun-Kyu YANG, Young-Geun PARK, Ki-Hyun HWANG, Han-Mei CHOI, Dong-Chul YOO
  • Patent number: 8039054
    Abstract: A layer deposition method includes: feeding a reactant with a first flow of an inert gas as a carrier gas into a reaction chamber to chemisorb the reactant on a substrate; feeding the first flow of the inert gas to purge the reaction chamber and a first reactant feed line; and feeding the second flow of the inert gas into the reaction chamber through a feed line different from the first reactant feed line.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-Sung Park, Young-Wook Park, Myeong-Jin Kim, Eun-Taek Yim, Han-Mei Choi, Kyoung-Seok Kim, Beung-Keun Lee
  • Patent number: 7994003
    Abstract: A method of fabricating a nonvolatile memory device includes forming a tunnel insulating layer on a semiconductor substrate, forming a charge storage layer on the tunnel insulating layer, forming a dielectric layer on the charge storage layer, the dielectric layer including a first aluminum oxide layer, a silicon oxide layer, and a second aluminum oxide layer sequentially stacked on the charge storage layer, and forming a gate electrode on the dielectric layer, the gate electrode directly contacting the second aluminum oxide layer of the dielectric layer.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byong-Ju Kim, Sun-Jung Kim, Zong-Liang Huo, Jun-Kyu Yang, Seon-Ho Jo, Han-Mei Choi, Young-Sun Kim
  • Publication number: 20110165750
    Abstract: In methods of manufacturing a semiconductor device, a plurality of gate structures spaced apart from each other and oxide layer patterns. A sputtering process using the oxide layer patterns as a sputtering target to connect the oxide layer patterns on the adjacent gate structures to each other is performed, so that a gap is formed between the gate structures. A volume of the gap is formed uniformly to have desired volume by controlling a thickness of the oxide layer patterns.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Inventors: Jun-Kyu Yang, Young-Geun Park, Ki-Hyun Hwang, Han-Mei Choi, Chan-Jin Park
  • Publication number: 20110159680
    Abstract: In a method of forming an aluminum oxide layer, an aluminum source gas and a dilution gas can be supplied into a chamber through a common gas supply nozzle so that the aluminum source gas may be adsorbed on a substrate in the chamber. A first purge gas can be supplied into the chamber to purge the physically adsorbed aluminum source gas from the substrate. An oxygen source gas may be supplied into the chamber to form an aluminum oxide layer on the substrate. A second purge gas may be supplied into the chamber to purge a reaction residue and the physically adsorbed remaining gas from the substrate. The operations can be performed repeatedly to form an aluminum oxide layer having a desired thickness.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Inventors: Dong-Chul YOO, Byong-Ju KIM, Han-Mei CHOI, Ki-Hyun HWANG
  • Patent number: 7964462
    Abstract: Provided is a method of manufacturing a semiconductor device. The method includes: forming a charge storage layer on a substrate on which a gate insulating layer is formed; forming a first metal oxide layer on the charge storage layer using a first reaction source including a metal oxide layer precursor and a first oxidizing agent and changing the first metal oxide layer to a second metal oxide layer using a second reaction source including a second oxidizing agent having larger oxidizing power than the first oxidizing agent and repeating the forming of the first metal oxide layer and the changing of the first metal oxide layer to the second metal oxide layer several times to form a blocking insulating layer; and forming an electrode layer on the blocking insulating layer.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-chul Yoo, Han-mei Choi, Kwang-hee Lee, Kyong-won An, Cha-young Yoo